

ATUL LTD

Atul 396020, Gujarat, India Telephone: (+91 2632) 230000 | 233261 Telefax: (+91 2632) 233027 | 233619

CIN: L99999GJ1975PLC002859 Email: atul_infra@atul.co.in Website: www.atul.co.in

Through Reg. AD Post

touching lives

Ref : Atul/SHE/EC Compliance/06

Date: 17th July, 2017

Mr. B. B. Barman

Scientist 'G'. Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road No. 3,

E-5, Ravi Shankar Nagar, Bhopal 462016,

Madhya Pradesh.

Subject

: Six Monthly Compliance on EC/CRZ Condition

Reference: 1. EC F. No. J-11011/48/2003- IA II (I) dated 20.02.2004

2. EC F. No. J -11011/85/2009- IA II (I) dated 13.05.2009

3. CRZ Clearance No. ENV-1097-2942-P, dated 17.01.1998

4. EC NO.SEIAA/GUJ/EC/1(d)/340/2016, dated 20.95.2016

Respected Sir,

Please find attached herewith six monthly compliance report for the period of December 2016- May 2017 with respect to the above referred Environment Clearances granted to M/s Atul Ltd. Valsad, Gujarat.

Kindly note that we are also submitting herewith our Environmental audit Report for the year 16-17 as per condition in CRZ. Report attached as Annexure 1 of compliance report for CRZ Clearance No. ENV-1097-2942-P, dated 17.01.1998.

We hereby request you to kindly validate the same.

Kindly do the needful and oblige.

Thanking you.

Yours truly, For ATUL LIMITED,

(B. N. Mohanan)

Whole time Director & President - Utility & Services

CC: 1. Mr. B. R. Naidu (Scientist 'E' & In charge), Central Pollution Control Board,

Zonal Office , Vadodara

2. The Member Secretary, Gujarat Pollution Control Board, Gandhinagar

Atul Limited

Project: Expansion of agro-chemicals (Pesticides/Herbicides) and bulk drug and pharmaceuticals manufacturing unit EC Compliance Report for the period December 2016– May 2017 to EC F. No. J -11011/48/2003-IA II (I) dated 20.02.2004.

No.	Condition	Com	pliance						
Α.	Specific Conditions:								
	The gaseous emissions (SO ₂ , NOx, and HCl) and	Com	plied. The gaseous e	emissions (S	SO ₂ , NOx,	and HC	l) and	particul	
	particulate matters from various process units	matte	ers from various proce	ess units coi	nfirms to th	e stand	ards pre	scribed	
	should confirm to the standards prescribed by	GPCE	3 through CCA.				_		
	the concerned authorities from time to time.								
		Detai	ls are given in below	Table:					
				Standard values as	Unit	Values for the period Dec 16-May 17			
				per CCA		Min.	Max.	Avg.	
		1	SO_2	40	mg/Nm ³	2.5	7.2	5.2	
		2	SO ₂ (kg/T)	2	kg/T	0.5	0.8	0.7	
		3	NOx	25	mg/Nm ³	4.6	12.4	7.6	
		4	HC1	20	mg/Nm ³	4.3	7.2	5.7	
		5	PM	150	mg/Nm³	4.6	28	11.6	
		6	PM with Pesticide compound	20	mg/Nm³	3.1	6.4	5.0	

	At no time, the emission levels should go beyond the stipulated standards.	Complied. Monthly monitoring is being done by GPCB approved, NAB approved agencies namely M/s. Royal Environment Auditing & Consultance Service, Rajkot and Clean Enviro Projects Consultancy Pvt. Ltd, Valsad. At no time, the emissions exceeded the prescribed limits during report period. The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wis summary is given below:								
		No.	Parameter	Standard values as	Unit		s for th 6-May 1	e period 7		
				per CCA		Min.	Max.	Avg.		
		1	SO ₂	40	mg/Nm ³	2.5	7.2	5.2		
		2	SO ₂ (kg/T)	2	kg/T	0.5	0.8	0.7		
		3	NOx	25	mg/Nm ³	4.6	12.4	7.6		
		4	HC1	20	mg/Nm³	4.3	7.2	5.7		
		5	PM	150	mg/Nm ³	4.6	28	11.6		
		6	PM with Pesticide compound	20	mg/Nm ³	3.1	6.4	5.0		
	In the event of failure of pollution control system(s) adopted by the unit, the respective unit should not be restarted until the control measures are rectified to achieve the desired efficiency.	•	plied . No such case h		9 1	liance period.				
ii	Ambient air quality monitoring Station should be set up in down wind direction as well as where max. ground level concentration of SPM anticipated in consultation with the state pollution control board.	down wind direction as well as where max. ground level concentration								

		List of our	r ambient air mo	nitoring statio	n is given be	low:		
			Location					
		1	66 KVA GEB subs	tation				
		2	Opposite Shed D					
		3	Near ETP (West Si	te)				
		4	ETP Plat (North sit	te)				
		5	Near TSDF					
		6	Near Main Guest I	House				
		7	At Wyeth Colony					
		8	Gram panchayat l	nall				
		9	Near Main office, N	North site				
		10	Water tank at Har	ia Road				
iii	Fugitive emission in work zone environment, product, raw material storage areas must be regularly monitored.	material sparty. The maximum the emiss	I. Fugitive emiss storage area is be mum values during ion level went be is given below:	ing regularly ing the complia	nonitored by nce period co	nABL a	approve that at 1	d third
		Plant	Area	Parameter	Prescribed Limit	Milligr	of VC am per e perio	. NM 3
						Min.	Max.	Avg.
		2,4 D	Reactor	Phenol	19	0.096	0.204	0.145
			Buffer tank	Chlorine	3	0.108	0.161	0.137
		Resorcino	Benzene storage tank area near vent	Benzene	15	1.04	2.92	1.76

		Near Extraction/s crubber unit	Butyl acetate	-	ND	ND	ND			
	Pharma	At second floor work area	Ammonia	0.8	0.71	0.95	0.81			
		Ammonia recovery area	Ammonia	0.8	0.69	0.84	0.75			
	Epoxy - I	At vacuum pump 2nd floor	ECH	10	6.92	8.71	7.83			
		At vessel POS 1208 G.F	ECH	10	7.15	8.71	8.16			
	Shed H	At second floor work area	Nitrobenzene	5	0.437	3.76	1.97			
	Shed J	Buffer Tank	Chlorine	3	0.71	0.95	0.81			
	Results for the compliance period is given in Table 2. (Pl. see pg. no. 19)									
The company should install alkali scrubbers for scrubbing of HCl.	fact we have water scrub	Alkali scrubbe installed dual ber system for C, Shed F, Sh	scrubbing sys scrubbing of l	tem i.e. co	mbination	of caus	stic an			
pH of the scrubber tank should be monitored	Complied.	pH of the scrul	bber tank is m	onitored r	egularly a	nd logg	ed. It			
regularly.		erating practic		. 41	L1 ! . 1 :	4	4- E/I			
Liquid effluent generated from the scrubber should be sent to effluent treatment plant.	along with p	Liquid effluent blant effluent s	tream.							
All the process equipment/reaction vessels should be connected with central exhaust system.	and the criti	Central exhaus ical operations ge scrubbing s	evolving the h	-		_				
Further measures should be taken to reduce the losses of solvents.	Complied.	Reactors are lves have been	connected to				systen			
Cooling arrangement should be made for all the solvent storage tanks to minimize	Complied . storage tank	Our Most of s	solvent storage	e tanks a	re underg	round.				
evaporation losses.	evaporation	losses.								

	The company should monitor VOCs from the	Complied. I									
	incinerator and data submitted regularly to		9						-		
	SPCB and Ministry of Environment and	-		k results	for the	compliar	nce perio	d is giver	n in Tabl		
	forests.	1. (Pl. see pg									
	The effluent generation should not exceed								2009 fo		
	1191 m3/day (936 m3/d of process effluen	t expansion, w	re request	to consi	der lates	t figures	given in	same.			
	and 255 m3/d of domestic effluent).										
		According to II (I) dated exceed 17,2 The average	13.05.20 83 m³/d. wastewat	009, Ind	ustrial V	Waste w	ater ger	eration	shall no		
		only. Detail b							I		
		Wastewater generation m ³ /day	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total		
		Month wise	247202	254036	223485	251933	248519	252740	147791		
		Per day	7974	8195	7982	8127	8284	8153	8119 (avg.)		
		The maximum	n values o	during th	e compli	ance per	riod confi	rms that	at no tin		
				_	nt beyond the stipulated standards. Summa						
			_			_		anaaras.	Summa		
		is given below	w:			ted value	Valu	es for th	e period		
		is given below	w:			ted value	Valu	es for th	e period		
		is given below	v: generatio	n		ted value	Valu Dec	es for th 16-May 1 Max.	e period 7		
	The effluent should be segregated at source o	wastewater g	v: generation generation	m ³ /d	Stipulat		Valu Dec Min.	mes for the 16-May 1 Max.	e period 7 Avg. 8119		
	The effluent should be segregated at source o generation.	wastewater g	w: generation generation Concentra	m ³ /d ted efflu	Stipulat 17283 ent is se	egregate	Valu Dec Min.	mes for the 16-May 1 Max.	e period 7 Avg. 8119		
		wastewater g Wastewater g Complied. Coretrieved through	y: generation generation Concentra ough reco	m ³ /d ted efflu very prod	Stipulate 17283 ent is second control of the	egregated	Walu Dec Min. 7974	Max. 8284 hemicals	Avg. 8119 are being		
	generation.	Wastewater g Fractional Complied Compl	generation generation concentra ough reco	m³/d ted efflu very prode e referred	Stipulat 17283 ent is secess/dist d expanse	egregated tillation.	Valu Dec Min. 7974 d and ch	Max. 4 8284 hemicals	Avg. 8119 are beinger		
	generation. The Concentrated effluent stream should be	Wastewater g Framework Wastewater g Framework Wastewater g Complied. Complied. A Complied. A Complied. A Complied. A Complied. A	generation Concentra ough reco mong the centrated. ad produc	m³/d ted efflu very proce e referred. We have	Stipulat 17283 ent is secess/dist d expanse installe ined are	egregated tillation. sion pro d distilla sold. Aft	Valuation plarter recover	Max. 4 8284 hemicals y one structure tery of pro	Avg. 8119 are being ream from the stread duct, leading and a stread duct, leading are stread at the		

The treated effluent should be discharged into estuary zone of river Par through 4.0 km long HDPE pipe line only after it meets the standards stipulated by the Gujarat Pollution Control Board/EPA rules.

Complied. The discharged effluent is meeting all state pollution control board limits and values of various parameters of treated effluent is given in **Table 3**. (Pl. see pg. no. 20) Apart from the same, we have carried out EIA study of river Par in 2009 & 2015.

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr. No.	Parameter	Norms	Values for the period De 16-May 17		
			Min.	Max.	Avg.
1	рН	5.5-9.0	7.1	8.1	7.4
2	Colour (Pt. Co. Scale)		56.0	86.0	69.7
3	Temperature (°C)	40	26.0	30.0	27.8
4	Suspended Solids	100 mg/l	46.0	72.0	58.3
5	Phenolic Compounds	5 mg/l	0.4	1.9	0.8
6	Cyanide	0.2 mg/l	0.0	0.0	0.0
7	Sulphide	2 mg/1	0.2	1.1	0.6
8	Ammonical Nitrogen	50 mg/1	3.9	42.0	28.4
9	BOD	100 mg/l	18.5	40.0	32.5
10	COD	250 mg/l	212.0	238.9	222.6
11	Hexa. Chromium Cr+6	1 mg/l	0.0	0.0	0.0
12	Total Chromium Cr ⁺²	2 mg/1	0.1	0.8	0.3
13	Fluorides	2 mg/l	0.0	0.0	0.0

	The domestic waste water should be disposed off through septic tank / soak pit system.	Complied. Domestic waste water goes to septic tank and subsequently in to ETP for further treatment. Detail of Domestic effluent generation is given in below table: Domestic Wastewater generation m³ Month wise 9886 12205 9002 10272 10366 11234 62966 Per day 319 394 322 331 346 362 346 (Avg.)									
		Domestic Waste	ewater g	generation	ı V			Ow: Dec 16-May 17			
v	The Company should also Set up a separate online fish pond using treated effluent, to ensure that the quality of treated effluent discharged into the par estuary does not have any adverse impact on the aquatic life.	Complied. We lat our ETP.	nave set	up a sepa	arate or	lline fish p	ond usin	g treated	effluent		
	The effluent quality at the discharge point must also be monitored periodically by an independent agency authorized by CPCB and report of the independent agency should be submitted to the Ministry's Regional office at Bhopal/CPCB/GPCB	Complied. The effluent quality at the ETP discharge point is regularly monitored by the Environmental auditors appointed by GPCB. The audit report to be submitted by June17 and the copy will be submitted the Ministry's Regional office at Bhopal/CPCB/GPCB as directed.									
vi	As reflected in the EIA/EMP report, the solid waste and ETP sludge should be incinerated	Atul/SHE/MoE Complied. ETF which we have	waste i	s dispose	d into d	our TSDF i					

	and incinerator ash should be disposed off in			through our CCA. We also send our					
	the landfill facility within the plant premises.	incinerab CCA.	le waste for co-processing a	is per GPCB approval given through our					
	The ground water quality in and around the	Complie	1 . Ground water quality i	s being checked regularly for in and					
	unit and the hazardous waste storage site	around t	the unit and the hazardo	ous waste storage site. Latest GPCB					
	should be regularly monitored and the data	Groundw	ater analysis report is attac	ched as Annexure B .					
	recorded to ensure that there is no								
	contamination of the groundwater.								
vii	The destructive efficiency of the incinerator			cy of the incinerator was assessed by					
	should be assessed by an agency like CPCB and			l on environmental monitoring. Report					
	a report submitted to the Ministry.	already s	ubmitted vide our letter Atı	ul/SHE/MoEF/Visit/3 dated 4.4.17.					
viii	The company should comply with the	Complied	d .						
	provisions of coastal Regulation Zone								
	Notification of 1991 and Coastal Zone								
	Management Plan of Gujarat. Further, specific conditions stipulated by the								
	ort is already submitted to the Ministry								
	Forest and Environment Department,	vide our l	etter our letter Atul/SHE/I	MoEF/Visit/3 dated 4.4.17.					
	Government of Gujarat vide its letter No. ENV-								
	1097-2942-P dated 27th January, 1998 for								
	laying of pipe line for discharge of treated								
	effluents through the estuary zone of the								
	River Par Zone should be strictly adhered to.								
ix	Occupational Health Surveillance of the			veillance of the workers is being done					
	workers should be done on a regular basis and			ained as per the factory act which is					
	records maintained as per the Factories Act.	shown in	below table:						
		Sr. No.	Month of Examination	Total No. of Employees					
		1	Quarter 4 (16-17)	843					
		2	Quarter 1 (17-18)	1673					
x	The company should develop rainwater harvesting structures to the harvest the run			constructed 6000 KL capacity pond to ost 75% of our per day requirement. We					
	off water from the rooftops and by laying a	,							
	separate storm water drains system for								
	Department water arange system for								
	1	there are three check dams and pumping facility to harvest rain water. We							

	recharge of ground water and to reduce the	are also constructing temporary sand bag dam on top of dam towards the
	drawl from the river Par.	end of monsoon to store additional free flowing rain water in river Par.
		We have harvest 632615 KL rain water during last monsoon season.
хi	The project authorities may undertake a	Complied . The survey was carried out to assess the impact of
	survey to assess the impact of gaseous	emission/pollutants on the health including respiratory & digestive systems
	emissions/pollutants on the health including	of population within & vicinity of the plant. So far no major illness have
	respiratory and digestive system of the	been identified. Report submitted vide our letter ref. Atul/MoEF/Reg/4
	population within and vicinity of the plant and	dated 16/8/04.
	report submitted to the State Government and	
	to this Ministry within six months.	
xii	The Company should developed a green belt in	Complied . Company has developed green belt and dense plantation inside
	an 25% of the plant area as per the CPCB	the factory in area more than 33 % of total land. Company is having green
	guidelines.	belt development plan and planting more than about 50000 plants per year
	3	on regular basis.
xiii	As per the policy decision taken vide this	Complied . We had submitted the Eco fund earmarked for eco development
2111	Ministry's circular no. J-21011/8/98- IA II (I)	to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3
	dated 14th May 2002 and 23rd June, 2003,	dated 17/05/2004. Action plan related to Eco-fund also made as per
	the company shall earmark a separate fund i.e.	process and communicated to authority wide our letter
	1% of the total cost of the project (Rs. 25	Atul/ECC/GPCB/ECO-fund/2 dated 2/11/2004. Copy of same again
	Crores) for eco-development measures	submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4.4.17.
	including community welfare measures in the	
	project area.	
	The amount shall be deposited within three	Complied . We had submitted the Eco fund earmarked for eco development
	months in a separate account to be	to GPCB with an intimation to MoEF vide our letter NRK/ECC/GPCB/3
	maintained by GPCB.	dated 17/05/2004.
	The plans in this regard should be submitted	Complied . Action plan related to Eco-fund also made as per process and
	to the SPCB as well as to the Ministry within	communicated to authority vide our letter Atul/ECC/GPCB/ECO-fund/2
	three months of issue of this letter.	dated 2/11/2004.
	After approval of the action plan by GPCB, the	Complied.
	amount deposited will be released to the	
	project authorities in two installments based	
	on the progress of implementation.	
	I	

В	. General Conditions										
i	The project authorities must strictly adhere to		plied . The company a								
	stipulations made by GPCB.		ipulation. This has b								
		autho	orized agency and no	minated by	GPCB; thro	ough Er	nvironmo	ental audit			
		every									
			t compliance report b								
			Rotary Institute of Ch		∞ ′	atariya,	Dist. B	haruch for			
			16-17 is attached as A								
ii	At no time, the emissions should not go	Complied . Monthly monitoring is being done by NABL approved third party. At no time, the emissions exceeded the prescribed limits during report									
	beyond standards.			s exceeded	the prescr	ibed lir	nits dui	ring report			
		period.									
		<i>(</i> 13)		. 1		1 ~					
			naximum values durii		-						
		the emission level went beyond the stipulated standards. Para									
		No.	nary is given below: Parameter	Standard	Unit	Result Value					
		NO.		values as	Ome						
				per CCA		Min.	Max.	Avg.			
		1	SO_2	40	mg/Nm ³	2.5	7.2	5.2			
		2	SO ₂ (kg/T)	2	kg/T	0.5	0.8	0.7			
		3	NOx	25	mg/Nm ³	4.6	12.4	7.6			
		4	HC1	20	mg/Nm³	4.3	7.2	5.7			
		5	PM	150	mg/Nm ³	4.6	28	11.6			
		6	PM with Pesticide compound	20	mg/Nm³	3.1	6.4	5.0			
			•	•	•	•	•				
	In the event of failure of any pollution control	Com	plied . No such incide:	nt hannene	during co	mnliano	re nerio	1			
	system adopted by the units, the respective	Comp	fice. No such melue.	птпаррепе	a during CO	шрпапс	c period	1.			
	unit should be immediately put out of										
	operation and should not be restarted until										
	the desired efficiency has been achieved.										
iii	The overall noise level in and around the plant	Com	plied . Acoustic hood,	silencer an	d acoustic	enclosu	res and	insulation			
	area shall be kept well within the standard by	_	rovided at appropriate								
	providing noise control measures including	P	ar appropriate		~0,	_ = 5. 550,					

acoustic hoods silencers, enclosures etc. on all source of noise generation.

The ambient noise levels should confirm to the standards prescribed under EPA Rules, 1989, viz. 75 (daytime) and 70bBA(night time)

Complied. The ambient noise level is regularly monitored and its data are given in **Table 4 and 5**. (Pl. see pg. no. 21)

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summery is given below:

Noise level monitoring data (Day Time)

Sr. No.	Location	Permissible Limits, dBA	Values for the period De 16-May 17			
		75	Min.	Max.	Avg.	
1	Near Main guest house	75	56	66	61	
2	Near TSDF	75	60	64	62	
3	At Wyeth Colony	75	57	62	60	
4	Gram Panchayat Hall	75	55	63	58	
5	Near Main Office North site	75	62	66	64	
6	ETP North site	75	67	69	68	
7	Opposite shed D	75	65	69	67	
8	ETP West site	75	63	68	66	
9	Water tank Haria road	75	58	64	61	
10	Near 66KVA substation	75	55	59	58	

Noise level monitoring data (Night Time)

Sr. No.	Location	Permissible Limits, dBA	Values f Dec 16-M	period	
		70	Min.	Max.	Avg.
1	Near Main guest house	70	51	61	56
2	Near TSDF	70	53	59	57
3	At Wyeth Colony	70	50	56	53
4	Gram Panchayat Hall	70	51	57	53

		5 Near Main Office No	orth site	70 5	56	61	58
		6 ETP North site		70 5	59	64	61
İ		7 Opposite shed D		70 5	58	63	61
		8 ETP West site		70 5	56	63	61
		9 Water tank Haria ro	oad	70 5	52	58	55
		10 Near 66KVA substa	tion	70 5	50	56	53
iv	The project authorities will provide adequate funds to recurring and non-recurring to implement the conditions stipulated by the Ministry of Environment and Forest as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purposes.	Complied. EMP measures are implement been at place. Non recurring cost: 6.3 Cr Recurring cost: A budget separate fund is allocated expenditure for the report p	: is prepa 1 toward	red for every o	coming tal ma	g six mo	nths and
	purposes.	Expenditure for months	Particul	lar		Expenses	Rs.
			Fuel		4	472813	
			Chemica	als(Raw Material)) (60425438	3
		December-2016 to May-	Electrici	ty	(22627394	1
		2017 Including, recurring	Waste di	isposal		14463925	5
		maintenance, modifications and monitoring.	Salary			13912288	3
			Mainten modifica		&	15922789)
l			Monitori	ing		1882235	
			Total			1297068	81
							ı

		anthonized agency and nominated by CDCD, through Francisco and to dist
		authorized agency and nominated by GPCB; through Environmental audit
		every year.
		Latest compliance report by GPCB appointed Environmental auditor Shroff
		S R Rotary Institute of Chemical Technology, Vatariya, Dist. Bharuch for
	A (1) (1) (2) (1) (2) (1)	year 16-17 is attached as Annexure C .
	Authorization from the GPCB must be	Complied . We have valid authorization under our current CCA No. AWH-
	obtained for collections /treatment/ storage/	67717 for handling, storage and disposal of hazardous waste.
	disposal of hazardous waste.	
vi	The stipulated conditions will be monitored by	Noted.
	the Regional office of this Ministry at Bhopal/GPCB.	
	A six monthly compliance report and the	Complied . Six monthly compliance report and the monitored data are being
	monitored data should be submitted to them	submitted to the Ministry at Bhopal with copy marked to GPCB regularly.
	regularly.	
Vii	The Project Proponent shall inform the public	Complied . We informed the public through advertisement and by sending
	that the project has been accorded	our EC to local Panchayat, Zila parishad, District Industrial Centre for
	environmental clearance by the Ministry and	further actions at their end.
	copies of the clearance letter are available	
	with the SPCB/Committee and may also be	
	seen at website of the Ministry of	
	Environment and Forest at	
	http://www.envfor.ni.in.	
	This shall be advertised within seven days	Complied . Advertisement was published as directed and copy of the same
	from the date of issue of the clearance letter	was submitted to Ministry.
	at least in two local newspaper that are widely	
	circulated in the region of which one shall be	
	in the vernacular language of the locality	
	concerned and a copy of the same shall be	
	forwarded to the concerned Ministry's	
	Regional office at Bhopal.	
3.0	The ministry or any competent authority may	Noted.
	stipulate any further condition(s) on receiving	
	reports from the project authorities.	
	I .	

	The above conditions will be monitored by the	Noted
	Regional Office of this Ministry located at	
	, ,	
	Bhopal.	
4.0	The Ministry may revoke or suspend the	Noted.
	clearance if implementation of any of the	
	above conditions is not satisfactory.	
5.0	Any other conditions or alternation in the	Noted and will be complied.
	above conditions will have to be implemented	
	by the project authorities in a time bound	
	manner.	
6.0	The above conditions will be enforced, inter-	Noted.
	alia under the provisions of the Water	
	(Prevention and Control of Pollution) Act,	
	1974 the Air ((Prevention and Control of	
	Pollution) Act, 1981 the Environment	
	(Protection) Act, 1986, Hazardous Wastes	
	(Management and Handling) Amendment	
	Rules, 2003 and the Public Liability Insurance	
	Act, 1991 along with their amendments and	
	rules.	

Table 1:	Stack Monitoring Details															
Sr. No.	Stack Details	Permissible Limits	Stack Height m	Paramenter	Date of Sampling	Obtained Value										
Atul East	Site															
1	Phosgene Plant	0.1 ppm	15	Phosgene	1/12/2016	ND	1/1/2017	ND	2/2/2017	ND	2/3/2017	ND	3/4/2017	ND	16/5/17	ND
	5 11 1 2 5 5 5 c	0.0 (27.0	25	07.0	15/10/2015		11/1/0017	F 0	0.10.10015	1	104/0/45	Teo	1.0/4/0015	14.0	1	In . n
2	Dechlorination Plant	9.0 mg/Nm3 20.0 mg/Nm3	35	CI 2 HCI	16/12/2016	4.6 5.6	11/1/2017	6.3	2/2/2017	5.5 6.1	24/3/17	5.2 5.8	10/4/2017	4.8 5.6		Not Runnig During Visi
3	Common stack of Hcl Sigri	9.0 mg/Nm3	25	CI 2	4	5.2	_	5.8		5.3	-	6.2	+	5.0	_	During visi
•	unit 1& 2	20.0 mg/Nm3	-	HCI	+	4.8	_	6.1		5.7	+	5.9		6.2		
FCB		20.0 mg/ 11m0		1101				0.1		0	1	0.5		0.2		
4	Foul Gas Scubber	40.0 mg/Nm3	26.5	SO2		Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig		Not Runnig
I		25.0 mg/Nm3		NOx	1					Runnig						
Sulfuric A	Acid (East Side)															
5	Sulfuric Acid plant	2.0 kg/T	30	SO2	7/12/2016	0.7	12/1/2017	0.8	3/2/2017	0.7	22/3/17	0.6	17/4/17	0.5	17/5/17	0.6
		50.0 mg/Nm3	1	Acid Mist	7	5.3	1	5.6		6.2	1	6.1	1	6.4	1	6.3
6	ChloroSulfonic Acid plant	9.0 mg/Nm3	11	CI 2		6.2		6.4		6.1		5.8		5.1		5.5
	reactor	20.0 mg/Nm3		HCI		5.9		5.7		5.3		5.5		5.7		5.4
Incinerat			1	<u> </u>						1						
7	Incinerator	150.0 mg/Nm3	40	PM	18/12/2016	20	12/1/2017	22	17/2/2017	24	15/3/17	26	17/4/17	28	10/5/2017	26
		40.0 mg/Nm3	_	SO2	4	4		5		6		2.5	4	2.8		2.9
NI Plant		25.0 mg/Nm3		Nox		12.2	<u> </u>	11.3		12.4		11.7	+	12.2		11.8
NI Plant	Foul Gas Scubber	40.0 mg/Nm3	26.5	SO2	29/12/2016	5.2	13/1/17	6.1	4/2/2017	6.5	9/3/2017	6.1	24/4/17	6.2	22/5/17	5.8
°	rour das scubber	25.0 mg/Nm3	20.5	Nox	29/12/2010	4.6	13/1/1/	5.3	4/2/2017	5.7	9/3/2017	5.3	24/4/17	5.7	22/3/17	5.2
NBD Plan	t.	zoro mg/ rimo		11011				0.0		0		0.0		0		0.2
9	Spray Dryer	150.0 mg/Nm3	21	PM		Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig		Not Runnig
						During Visit		During Visit		Runnig During		During Visit		During Visit		During Visi
2-4-D Pla	nt									T7:-:+						
10	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12	10/12/2016	5.4	25/1/17	6.2	22/2/17	5.8	17/3/17	5.2	25/4/17	6.2	18/5/17	6.8
		20.0 mg/Nm3		HCI	7 ' '	5.8	, ,	5.4	1 ' '	5.2	1 ' '	5.7	1	7.1	1 ' '	7.2
11	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12		4.8		5.8		6.1	1	5.5	1	5.8		5.6
		20.0 mg/Nm3		HCI		6.2	Ī	6.5		6.8		6.4	1	6.2	1	5.8
12	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12	9/12/2016	2.2		2.5	16/2/17	2.8	18/3/17	2.5	24/4/17	2.7	19/5/17	2.6
		20.0 mg/Nm3		HCI		4.3		5.1		5.4		5.1		5.4		5.6
13	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12		3.8	26/1/17	3.4		3.7		3.5	1	3.8		3.6
		20.0 mg/Nm3		HCI	4	5.2		4.8		5.1	4	5.8	4	5.2	4	5.8
14	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12	4	2.8	4	3.6		3.8	4	3.6	4	3.1	4	3.4
15	Common Scrubber; 2,4D	20.0 mg/Nm3	-	HCI Cl2	-	5.4 2.6	4	5 2.8	1	5.6 3.2	4	5.4 3.1	4	5.1 2.9	4	5.4 3.2
13	Plant	9.0 mg/Nm3 20.0 mg/Nm3	3	HCI	4	5.6		5.4	1	6.2	4	6.5	-	6.2	4	6.8
16	Dryer-1	20.0 mg/Nm3	26.5	PM with	-	3.8	27/1/17	3.4	1	3.7	+	3.4	+	3.3	1	3.6
-"	21,01	20.0 mg/ 11110	20.0	Pesticide		0.0	2./1/1/			0.7		[0.0		0.0
17	Dryer-2	20.0 mg/Nm3	26.5	PM with Pesticide	1	5.2		5.6		6.4		6.2	1	5.8		6.4
18	Dryer-3	20.0 mg/Nm3	26.5	PM with Pesticide	8/12/2016	3.6]	3.1		3.5	1	3.5		3.2	1	3.4
19	Dryer-4	20.0 mg/Nm3	26.5	PM with Pesticide		5.2	1	5.3		5.8		5.6	1	5.1		6.2
20	Common Scrubber; 2,4D Plant		5	Phenol		ND	18/1/17	ND		ND		ND		ND		ND

Page 15 of 22

CP Plan	t	Permissible Limits	Stack Height m	Paramenter	Date of Sampling	Obtained Value		Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
21	MCPA	9 mg/NM ³	19	CL_2		Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig		Not Runnig
		20 mg/NM ³		HCL	1	During Visit		During Visit		Runnig During		During Visit		During Visit		During Visit
		40 mg/NM ³		SO_2		Visit		Visit		Visit		VISIC				
22	Fipronil	40 mg/NM ³	19	SO2		Not Runnig During		Not Runnig During		Not Runnig		Not Runnig During		Not Runnig During Visit		Not Runnig During Visit
		20 Mq/Nm3		HCL		Visit		Visit		During Visit		Visit				
23	Imidacloprid	175 Mg/Nm3	20	NH3		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
24	Pyrathroids	40 Mg/Nm3	19	SO2		Not Runnig During Visit		Not Runnig During Visit		Not Runnig		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
		20 Mq/Nm3		HCL	1	VISIL		VISIL		During Visit		VISIL				
25	Stack at Amine Plant	175 Mg/Nm3	5	NH3	2/12/2016	9		Not Runnig During Visit	18/2/17	5.6	23/3/17	5.1		Not Runnig During Visit		Not Runnig During Visit
MPSL P	ant															
26	Phosgene Scrubbr at MPSL	0.1 ppm	7	Phosgene	7/12/2016	ND	17/1/17	ND	18/2/17	ND	4/3/2017	ND	5/4/2017	ND		ND
27	Central Scrubber at MPSL	0.1 ppm	7	Phosgene	7/12/2016	ND		ND		ND		ND		ND		ND
NICO P1																
28	Central scrubber at Nico Plant		12	Acetonytryle, IPA		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
Ester Pa	ılnt															
29	Scrubber at Ester plant for Glyphosate	10 Mg/Nm3	12	Formaldehyde		Not Runnig During		Not Runnig During		Not Runnig		Not Runnig During		Not Runnig During Visit	29/7/2016	2.1
30	Central Scrubber MCPA Plant	20 Mg/Nm3	19	HCL		Visit		Visit		During Visit		Visit				Not Runnig During Visit
Atul We	st Site															
31	Shed A7/14/41 Reaction pan/ D tank	2.0 mg/Nm3	19	Bromine		Not Runnig During		Not Runnig During		Not Runnig		Not Runnig During		Not Runnig During Visit		Not Runnig During Visit
		25.0 mg/Nm3		NOx		Visit		Visit		During Visit		Visit				
	•													Page 16 of 22	; <u> </u>	

		1	1	_			-		I		1	1	I		l	1
		Permissible Limits	Stack Height	Paramenter	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
			m						1 0						1 0	
32	Shed B2/12/24 Reaction	9.0 mg/Nm3	19	C12	14/12/2016	3.8	12/1/2017	4.2	16/2/17	4.6	9/3/2017	4.2	11/4/2017	4.6	4/5/2017	4.8
	Vessel	20.0 mg/Nm3		HCI		4.8		5.1		5.4		5.1		5.3		5.6
33	Shed C5/20/15 Chlorinator	9.0 mg/Nm3	19	C12	14/12/2016	5.2	3/1/2017	4.8	10/2/2017	5.1		5.8		5.2	5/5/2017	5.4
		20.0 mg/Nm3		HCI		5.6		5.3		5.8		5.2		5.9		5.2
34	Shed D Niro Spray dryer No.45	150.0 mg/Nm3	19	PM	1/12/2016	6.2	12/1/2017	5.8	18/2/17	5.3	16/3/17	5.1	12/4/2017	5.6	4/5/2017	4.6
35	Shed D Niro Spray dryer No. 50	150.0 mg/Nm3	19	PM		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		5.9		5.3
36	Shed E 7/12/49 Spray Dryer	150.0 mg/Nm3	19	PM		Not Runnig During Visit	11/1/2017	6.4	10/2/2017	6.1	17/3/17	6.3		6.1	11/5/2017	5.7
37	Shed F 6/1/15 Reaction	9.0 mg/Nm3	19	C12		Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig	12/5/2017	5.3
	Vessel	20.0 mg/Nm3	_	HCI		During Visit		During Visit		Runnig During		During Visit		During Visit		6.2
						VISIT		VISIT		Visit		VISIT				
38	Shed G 10/8/1 (receiver)	9.0 mg/Nm3	19	C12		Not Runnig		Not Runnig	-	Not		Not Runnig	1	Not Runnig		Not Runnig
		20.0 mg/Nm3	-	HCI		During Visit		During Visit		Runnig During Visit		During Visit		During Visit		During Visit
39	Shed H 1/6/17 Chlorinator	9.0 mg/Nm3	19	C12	2/12/2016	3.1	12/1/2017	Not Runnig	-	Not		Not Runnig	1	Not Runnig	22/5/17	4.2
		20.0 mg/Nm3		HCI		5.7		During Visit		Runnig During Visit		During Visit		During Visit		5.6
40	Shed K K-13/3/4 Final of	2.0 kg/T	19	SO2	†	0.8		0.6	17/2/17	0.7	16/3/17	0.6	19/4/17	0.7	23/5/17	0.6
	Sulfuric acid plant	50.0 mg/Nm3		Acid Mist	İ	4		5	, ,	6	1 ' '	5	1 ' '	6	, ,	5
Atul Nor	th Site															
41	N-FDH Plant Catalytic	150.0 mg/Nm3	31.5	PM	29/12/2016	25	18/1/17	22	24/2/17	21	30/3/17	19	25/4/17	17	29/5/17	19
	Incinerator	40.0 mg/Nm3		SO2	Ī	5.4	1	5.1		5.4		5.2		7.2		6.8
		25.0 mg/Nm3		Nox	Ĭ	5.8		5.4		5.1		5.5		6.1		5.4
		10.0 mg/Nm3		Formaldehyde	[ND		ND		ND		ND		ND		ND
42	PHIN Plant	0.1 ppm	15.5	Phosgene		ND	25/1/17	ND		ND		ND		ND	30/5/17	ND
43	DCDPS Plant		30	SO3		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
44	DDS Plant	175 Mg/Nm3	20	NH3	28/12/2016	Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
45	SPIC II Plant		30	SO3	1	2.2	4/1/2017	2	25/2/17	2.4	10/3/2017	2.5	26/4/17	2.1	29/5/17	2.4
46	SPIC I Plant	175 Mg/Nm3	30	NH3	1	3.6	1	3.2		3.6		3.1	1	3.3	30/5/17	3.1
														Page 17 of 22		

Details of	Flue gas stack	Permissible Limits	Stack Height m	Paramenter	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
East site																
1	FBC boiler El	150.0 mg/Nm3	34	SPM	29/12/2016	38	16/1/17	36	17/2/17	32	11/3/2017	35	17/4/17	37	23/5/17	35
		100 ppm		SO2	7 ., .,	35	- / /	32	1 ′ ′	31	, , , , ,	32	1 ′′	34	1,	31
		50 ppm		Nox	7	32		34		33		34	1	36		33
2	FBC boiler E2	150.0 mg/Nm3	34	SPM		36		38	1	37		33	1	31		32
		O,														
		100 ppm		SO2	7	31	1	34	1	35		31	1	33		30
		50 ppm		Nox	7	33		36	1	34	1	37	1	35		32
3	FBC boiler No.3	150.0 mg/Nm3	50	SPM		34	1	35		34		37		34		36
		100 ppm	_	SO2		32	-	31	1	32	1	34	1	31		33
		50 ppm		Nox	7	36		35	1	37	1	36	1	33		35
4	Hot Oil Unit (Resorcinol Plant)	150.0 mg/Nm3	32.5	SPM		ND										
		100 ppm	1	SO2	- 	ND		ND	+	ND	-	ND	+	ND	_	ND
		50 ppm	-	Nox	- 	24	1	26	†	24	-	25	1	27	=	29
West Site		оо ррш		11021				120				20	-			27
5	FBC boiler W1	150.0 mg/Nm3	45	SPM	30/12/2016	32	17/1/17	34	18/2/17	31	10/3/2017	33	18/4/17	35	24/5/17	34
		100 ppm	-	SO2	- 	37	1	35		33	-	35	1	32	=	31
		50 ppm	_	Nox	7	35		32		36	1	37	1	38	-	36
6	Coal fired Boiler W1	150.0 mg/Nm3	35	SPM	_	Not in use		Not in use								
		100 ppm		SO2	7											
		50 ppm		Nox	7											
7	Coal fired boiler W2	150.0 mg/Nm3	35	SPM		Not in use										
		100 ppm		SO2	7											
		50 ppm		Nox	7											
8	Hot Oil Plant shed-B	150.0 mg/Nm3	19	SPM		ND	17/1/17	ND	18/2/17	ND	10/3/2017	ND		ND	24/5/17	ND
		100 ppm		SO2		ND		ND	1	ND		ND		ND		ND
		50 ppm		Nox	T	27		29	1	27		29		28		26
9	Oil burner Shed B (Standby)	150.0 mg/Nm3	17	SPM		STAND BY										
		100 ppm		SO2												
		50 ppm		Nox												
10	Boiler (50 TPH 2 Nos)	50.0 mg/Nm3	108	PM	31/12/2016	39	18/1/17	37	16/2/17	35	31/3/17	37	26/4/17	36	29/5/17	38
		100 ppm		SO2		34		32		36		34		32		35
		50 ppm		Nox		31		30		31		32		34		36
				Mercury		ND		ND	_	ND		ND		ND		ND
11	DG set 1500 KVA (Standby)	150.0 mg/Nm3	12	SPM		STAND BY		STAND BY	1	STAND BY		STAND BY		STAND BY		STAND BY
		100 ppm		SO2												
	ļ	50 ppm		Nox	1											
North Site		T	T	1-	T	r		1			1	ı	1		1	
12	Thermic fluid heater of DCO/DAP Plant	150.0 mg/Nm3	12	SPM	31/12/2016	58		56		52	30/3/17	49	25/4/17	47	18/5/17	45
		100 ppm		SO2		49		43		40		37		35		34
		50 ppm	1	NOx	1	34		32		30		32		33		31

Page 18 of 22

Table 2: Fugitive Emission Monitoring details

Plant	Area	Parameter	Prescribed Limit	Results	of VOCs	in Milligr	am per N	M 3	
				Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17
2,4 D	Reactor	Phenol	19	0.144	0.204	0.165	0.138	0.120	0.096
	Buffer tank	Chlorine	3	0.108	0.136	0.121	0.148	0.161	0.148
Resorcinol	Benzene storage tank area near vent	Benzene	15	1.94	2.92	1.92	1.47	1.04	1.27
	Near Extraction/ scrubber unit	Butyl acetate	-	ND	ND	ND	ND	ND	ND
Pharma	At second floor work area	Ammonia	0.8	0.71	0.850	0.740	0.820	0.950	0.810
	Ammonia recovery area	Ammonia	0.8	0.77	0.840	0.770	0.690	0.720	0.690
Epoxy - I	At vacuum pump 2nd floor	ECH	10	7.94	7.110	6.920	7.770	8.550	8.710
	At vessel POS 1208 G.F	ECH	10	8.71	7.150	7.210	8.520	8.710	8.660
Shed H	At second floor work area	Nitrobenzene	5	0.437	0.840	2.980	1.760	2.060	3.760
Shed J	Buffer Tank	Chlorine	3	0.176	0.184	0.296	0.114	0.178	0.128

Table 3: Quality of treated effluent

Sr. No.	Parameter Results										
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17				
1	рН	7.2	7.3	7.18	8.14	7.2	7.1	5.5-9.0			
2	Colour (Pt. Co. Scale)	68	66	86	84	56	58				
3	Temperature (°C)	26	28	26	28	29	30	40			
4	Suspended Solids	52	48	46	72	64	68	100			
5	Phenolic Compounds	0.4	0.7	1.86	0.48	0.7	0.5	5			
6	Cyanide	ND	ND	ND	ND	ND	ND	0.2			
7	Sulphide	ND	ND	ND	1.08	0.6	0.2	2			
8	Ammonical Nitrogen	42	40	3.92	16.32	32	36	50			
9	BOD	36	35	28.3	18.54	37	40	100			
10	COD	221	216	221.5	238.9	212	226	250			
11	Hexa. Chromium Cr+6	ND	ND	ND	ND	ND	ND	1			
12	Total Chromium Cr ⁺²	0.2	0.1	0.76	0.73	0.1	0.2	2			
13	Fluorides	ND	ND	ND	ND	ND	ND	2			

Note: ND is not detectable. Unit of measurement is mg/l else specified

Table 4: Noise level monitoring data (Day Time)

Sr. No.	Location	Noise L	Permissible Limits, dBA					
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	75
1	Near Main guest house	66	64	61	58	56	58	75
2	Near TSDF	64	62	60	62	63	62	75
3	At Wyeth Colony	62	60	59	57	59	61	75
4	Gram Panchayat Hall	59	63	57	55	57	59	75
5	Near Main Office North site	66	65	62	63	64	63	75
6	ETP North site	68	69	68	67	68	67	75
7	Opposite shed D	65	68	66	69	65	66	75
8	ETP West site	63	66	68	66	67	68	75
9	Water tank Haria road	59	58	59	62	63	64	75
10	Near 66KVA substation	57	55	57	59	58	59	75

Table 5: Noise level monitoring data (Night Time)

Sr. No.	Location	Noise L	Noise Level, dBA								
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	70			
1	Near Main guest house	60	61	57	52	51	52	70			
2	Near TSDF	58	59	56	57	53	56	70			
3	At Wyeth Colony	56	55	53	52	50	54	70			
4	Gram Panchayat Hall	54	57	52	51	52	52	70			
5	Near Main Office North site	61	60	56	58	56	57	70			
6	ETP North site	60	64	63	61	59	61	70			

7	Opposite shed D	58	62	61	63	61	60	70
8	ETP West site	56	61	63	62	60	62	70
9	Water tank Haria road	53	52	53	57	58	57	70
10	Near 66KVA substation	52	50	51	55	53	56	70

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Gujarat Pollution Control Board, Vapi
C5/124, GIDC Vapi,
Near Hotel Pritam,
Vapi - 396 195
Tele:(0260) 2432089

Sample ID:211014 - Analysis Completion:31/05/2017

Dves And Dve-Intermediates. / LAB Inward: 41625

Accreditation Standards & NABL Certificate Details: Biological(T-3121) / Chemical(T-3120) / 18.09.2014 / 17.09.2016

TEST REPORT

Test Report No.: 41625 Date: 01/06/2017

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc.,AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : DIR-After Direction)

4. Sample Collected By : Patel lateshkumar A, AEE

5. Quantity of Sample Received : 0

6. Code No. of the Sample : 211014

7. Date & Time of Collection & Inwarding : 20/05/2017, (1525 to 1525) & 22/05/2017

8. Date of Start & Completion of Analysis : 22/05/2017 & 31/05/2017

9. Sampling Point : From Gaurd pond for final discharge ~ From Final Treated waste water guard pond

10. Flow Details (Remarks) : --

11. Mode of Disposal12. Ultimate Receiving Body13. Estuary zone of river par

13. Temperature on Collection : 30 & pH Range on pH Strip :@ 7 on pH Strip 14. Carboys Nos for : Barcode & Color & Appearance :Brown

15. Water Consumption & W.W.G (KLPD) : Ind :23726.000 , Dom :938.000 & Ind :21337.000 , Dom :939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part – 9) – 1984(Reaffirmed 2006)	Ambient oC - 60 oC	30
2	pH	pH Units	4500 H+ B APHA Standard Methods 22nd edi.2012	1 – 14 pH value As or	6.850
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	85
4	Total Dissolved Solids	mg/l	Gravimetric method. (2540 C APHA Standard Method	10 – 200000 mg/L	3410
5	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 – 10000 mg/L	04
6	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standa	1 - 2000 mg/l.	3.19
7	Chloride	mg/l	Argentometric method. (4500 CI? B APHA Standard N	1 - 50000 mg/l	1300
8	Sulphate	mg/l	APHA(22nd edi)4500 SO4 E	2-40mg/l	994
9	Chemical Oxygen Demand	mg/l	APHA (22nd Edition)- 5220 B Open Reflux Method-2	5.0- 50000 mg/l	174
10	Oil & Grease	mg/l	Liquid – Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	1.6
11	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 – 50 mg/l	0.298
12	Sulphide	mg/l	APHA (22nd Edi.)4500-s2-F –iodometric Method	1-500.0 mg/l	BDL
13	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05–50000 mg/l	46

<u>Laboratory Remarks</u>: FREEZE By:445-lab_445 Dt.: 01/06/2017

J.D.OZA, Lab Head

Field Observation :

Note:

- 1. $^{\star}\,$ These parameters are covered under the scope of NABL.
- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 22nd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

C5/124, GIDC Vapi,

Gujarat Pollution Control Board, Vapi

Near Hotel Pritam, Vapi - 396 195 Tele:(0260) 2432089

Sample ID:205274 - Analysis Completion:27/02/2017

Dves And Dve-Intermediates. / LAB Inward: 40525

Accreditation Standards & NABL Certificate Details: Biological(T-3121) / Chemical(T-3120) / 18.09.2014 / 17.09.2016

TEST REPORT

Test Report No.: 40525 Date: 27/02/2017

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc.,AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : HOR-H.O.Reference)

4. Sample Collected By : A.G. Rana, SO(M)

: 0 5. Quantity of Sample Received

6. Code No. of the Sample : 205274

7. Date & Time of Collection & Inwarding : 10/02/2017, (1105 to 1105) & 13/02/2017

8. Date of Start & Completion of Analysis : 13/02/2017 & 27/02/2017

: Water sample collected from borewell No. 1 (Upstream of TSDF) ~ 9. Sampling Point

10. Flow Details (Remarks) 11. Mode of Disposal 12. Ultimate Receiving Body : 0

13. Temperature on Collection : 25 & pH Range on pH Strip :@ 7 on pH strip 14. Carboys Nos for : Barcode & Color & Appearance :colourless

15. Water Consumption & W.W.G (KLPD) : Ind:22627.000, Dom:938.000 & Ind:19210.000, Dom:938.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	ature Centigrade IS: 3025 (Part – 9) – 1984(Reaffirmed 2006)		Ambient oC - 60 oC	25
2	рН	pH Units	4500 H+ B APHA Standard Methods 22nd edi.2012	1 – 14 pH value As or	7.37
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	2.5
4	Total Dissolved Solids	mg/l	Gravimetric method. (2540 C APHA Standard Method	10 – 200000 mg/L	1106
5	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 – 10000 mg/L	14
6	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standa	1 - 2000 mg/l.	<1.0
7	Chloride	mg/l	Argentometric method. (4500 CI? B APHA Standard N	1 - 50000 mg/l	333
8	Sulphate	mg/l	APHA(22nd edi)4500 SO4 E	2-40mg/l	29
9	Chemical Oxygen Demand	mg/l	APHA (22nd Edition)- 5220 B Open Reflux Method-2	5.0- 50000 mg/l	16
10	Oil & Grease	mg/l	Liquid – Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	BDL
11	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 – 50 mg/l	BDL
12	Cyanide	mg/l	Titrimetric method. (4500 - CN? D APHA Standard Me	1-10 mg/l	BDL
13	Sulphide	mg/l	APHA (22nd Edi.)4500-s2-F –iodometric Method	1-500.0 mg/l	BDL
14	Hexavalent Chromium	mg/l	APHA (22nd Edition) -3500 - Cr B: -2012 Colorimet	0.1 – 100 mg/l	BDL
15	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05–50000 mg/l	3.0

Laboratory Remarks: FREEZE By:445-lab_445 Dt.: 27/02/2017

J.D.OZA, Lab Head

Field Observation:

Note:

- 1. * These parameters are covered under the scope of NABL.
- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- 6. Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 22nd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Gujarat Pollution Control Board, Vapi
C5/124, GIDC Vapi,
Near Hotel Pritam,
Vapi - 396 195

Tele:(0260) 2432089

ANTITAL STATE OF THE PARTY OF T

Sample ID:205278 - Analysis Completion:27/02/2017

Dyes And Dye-Intermediates. / LAB Inward: 40522

Accreditation Standards & NABL Certificate Details: Biological(T-3121) / Chemical(T-3120) / 18.09.2014 / 17.09.2016

TEST REPORT

Test Report No.: 40522 Date: 27/02/2017

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc.,AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : HOR-H.O.Reference)

4. Sample Collected By : A.G. Rana, SO(M)

5. Quantity of Sample Received : 0

6. Code No. of the Sample : 205278

7. Date & Time of Collection & Inwarding : 10/02/2017, (1123 to 1123) & 13/02/2017

8. Date of Start & Completion of Analysis : 13/02/2017 & 27/02/2017

9. Sampling Point : Water sample collected from borewell No. 4 (Downstream of TSDF) ~

10. Flow Details (Remarks): ---11. Mode of Disposal: ---12. Ultimate Receiving Body: 0

13. Temperature on Collection : 25 & pH Range on pH Strip :@ 7 on pH strip 14. Carboys Nos for : Barcode & Color & Appearance :colourless

15. Water Consumption & W.W.G (KLPD) : Ind :22627.000 , Dom :938.000 & Ind :19210.000 , Dom :938.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part – 9) – 1984(Reaffirmed 2006)	Ambient oC - 60 oC	25
2	pH Units 4500 H+ B APHA Standard Methods 22nd edi.20		4500 H+ B APHA Standard Methods 22nd edi.2012	1 – 14 pH value As or	7.24
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	2.5
4	Total Dissolved Solids	mg/l	Gravimetric method. (2540 C APHA Standard Method	10 – 200000 mg/L	560
5	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 – 10000 mg/L	6
6	Ammonical Nitrogen	mg/l	1). Titrimetric method (4500 NH3 B & C APHA Standa	1 - 2000 mg/l.	<1.0
7	Chloride	mg/l	Argentometric method. (4500 CI? B APHA Standard N	1 - 50000 mg/l	170
8	Sulphate	mg/l	APHA(22nd edi)4500 SO4 E	2-40mg/l	23
9	Chemical Oxygen Demand	mg/l	APHA (22nd Edition)- 5220 B Open Reflux Method-2	5.0- 50000 mg/l	15
10	Oil & Grease	mg/l	Liquid – Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	BDL
11	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 – 50 mg/l	BDL
12	Cyanide	mg/l	Titrimetric method. (4500 - CN? D APHA Standard Me	1-10 mg/l	BDL
13	Sulphide	mg/l	APHA (22nd Edi.)4500-s2-F –iodometric Method	1-500.0 mg/l	BDL
14	Hexavalent Chromium	mg/l	APHA (22nd Edition) -3500 - Cr B: -2012 Colorimet	0.1 – 100 mg/l	BDL
15	B.O.D (3 Days 27oC)	mg/l	3 – Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05–50000 mg/l	2

<u>Laboratory Remarks</u>: FREEZE By:445-lab_445 Dt.: 27/02/2017

J.D.OZA, Lab Head

Field Observation :

Note:

- 1. $^{\star}\,$ These parameters are covered under the scope of NABL.
- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 22nd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

ENVIRONMENTAL AUDIT REPORT

FOR AUDIT PERIOD
APRIL-2016
TO
MARCH-2017

Industry

M/s. ATUL LIMITED., ATUL-396020, DIST: VALSAD.

Auditor
SHROFF S R ROTARY INSTITUTE OF
CHEMICAL TECHNOLOGY (SRICT)
Block No. 402, At & Post Vataria, Dist. Bharuch.

ANNEXURE - 19 COMPLIANCE REPORT AND CASE/COMPLAIN

	Detail	Has valid consent/	Complying with standards and other Conditions
(A)	Compliance Report of water as per Water Act, 1974: If NO, comment:		Complied
(B)	Compliance Report for Air as per Air Act, 1981: If NO, comment	Yes.	Complied
(C)	Compliance Report for the storage and handling of hazardous waste/chemicals under The Hazardous Waste (Management and Handling and trans boundary Movement) Rule, 2008 & EPA-86 If NO, comment:	to 03.11.2019	Complied

Atul Limited

Project: Expansion of Pesticide and Synthetic Organic Chemicals manufacturing unit at post Atul, Dist. Valsad EC Compliance Report for the period December 2016 – May 2017 as per EC F. No. J -11011/85/2009-IA II (I) dated 13.05.2009

No.	Condition	Compliance									
A. SI	pecific Conditions	<u> </u>									
i	Industrial Waste water generation shall rexceed 17,283 m ³ /d.		m³/day only which is well within the limit. Detail break up is given in below								
		Wastewater generation m ³ /day	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total		
		Month wise	247202	254036	223485	251933	248519	252740	1477915		
		Per day	7974	8195	7982	8127	8284	8153	8119 (avg.)		
		below:	wastewater generation went below: Wastewater generation			Stipulated value		Values for the period Dec 16-May 17			
		Wastewater g	generation	;	Stipulated	value		_	iod		
		Wastewater g	generation		Stipulated	value	Dec 16-N	May 17	vg.		
		Wastewater g			Stipulated 17283	value	Dec 16-Min.	Iay 17 Iax. A			

97 m ³ /d High TDS effluent shall be evaporated through MEE.	Complied. To MEE. Detail 1	•	_			aste wat	er was e	vaporat
	High TDS effluent m ³	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total
	Month wise	3036	2677.2	2299.1	2874.1	3010.0	3533.9	17430.
	Per day	97.9	86.4	74.2	92.7	97.1	113.91	93.7 (avg.)
	High TDS eff	luent		Va	alues for t	he period	1 Dec 16-I	May 17
	High TDS eff	luent					d Dec 16-I	•
	m ³ /d	luent		М	alues for t in. 1.2	Max. 113.9	Avg. 93.7	
			eration is	M	in. 1.2	Max. 113.9	Avg. 93.7	
Total quantity of 17283 m ³ /d shall be treated at company's own effluent treatment plant.	m³/d High TDS effl	uent gen	ge 8119 n	7/2 variable n³/day w	in. 1.2 as per the	Max. 113.9 e produce	93.7 etion.	

Ammonia bearing effluent shall be subject to ammonia recovery before mixing with normal effluent stream.

Complied. Ammonia bearing effluent streams generated from 4,4 DDS production is recovered by stripping in series of packed column. The ammonia contained water from the stripper is condensed in condenser and recovered ammonia is being recycled back in production of 4,4 DDS.

Details are given in below table:

Amm. bearing effluent	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total
MT	620	379	372	459	365	302	2497

Phenol will be recovered from phenol containing effluent.

Complied. 20 Kgs phenol is recovered from effluent per one MT of 2,4 D production. A distillation column has been installed for phenol recovery. Resin tower are installed to recover phenol. Data is given in below table:

	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total
DCP crude distilled	1490.55	1517.02	1447.8	1590.76	1527.6	1185.6	8759.32
2,4DCP recovered	1307.5	1330.72	1270	1395.4	1340	1040	7683.62
2.6DCP recovered	98.062	99.253	95.25	104.655	100.5	78	575.72
OCP/ Residue	84.988	87.0421	82.55	90.701	87.1	67.6	499.981

The treated effluent shall confirm the discharge norms.

Complied. The treated effluent is meeting all the state pollution control board's discharge norms and values of various parameters of treated effluent is given in **Table 1**. (Pl. see pg. no. 25)

The maximum values during the compliance period confirms that at no time the emission went beyond the stipulated standards. Summary is given below:

Sr. No.	Parameter	Norms	Values fo 16-May 1	r the perio	d Dec
			Min.	Max.	Avg.
1	рН	5.5-9.0	7.1	8.1	7.4
2	Colour (Pt. Co. Scale)		56.0	86.0	69.7
3	Temperature (°C)	40	26.0	30.0	27.8
4	Suspended Solids	100 mg/l	46.0	72.0	58.3
5	Phenolic Compounds	5 mg/1	0.4	1.9	0.8
6	Cyanide	0.2 mg/1	0.0	0.0	0.0
7	Sulphide	2 mg/1	0.2	1.1	0.6
8	Ammonical Nitrogen	50 mg/l	3.9	42.0	28.4
9	BOD	100 mg/l	18.5	40.0	32.5
10	COD	250 mg/l	212.0	238.9	222.6
11	Hexa. Chromium Cr+6	1 mg/l	0.0	0.0	0.0
12	Total Chromium Cr ⁺²	2 mg/1	0.1	0.8	0.3
13	Fluorides	2 mg/l	0.0	0.0	0.0

	The domestic effluent shall be disposed off through septic tank / soak pit.	off Complied . Domestic effluent goes to septic tank / soak pit and finally divert to ETP. Detail of Domestic effluent generation is given in below table:								
		Domestic Wastewater generation m ³	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total	
		Month wise	9886	12205	9002	10272	10366	11234	62966	
		Per day	319	394	322	331	346	362	346 (Avg.)	
		The maximum, Domestic Wast					,	ow: iod Dec 16	5-May 17	
			omator B			Min.	Max.	Avg.		
		Domestic Wastewater generation m ³ /d				319	394	346		
i	The process emissions (SO ₂ , NH ₃ , Cl ₂ , and HCl, shall be scrubbed with Scrubbers.	Complied . All the SO ₂ , NH ₃ , Cl ₂ , and HCl vents are being routed through adequate and properly designed scrubbing system. Furthermore, most of the process and flue gas stacks have been monitored through online monitoric system and also connected to GPCB and CPCB website.						nost of the		
	The emission shall be dispersed through stack of adequate height as per CPCB standard.	Complied. The CPCB standard		-	ersed thr	ough ade	quate he	ight of sta	acks as pe	
		For Incinerator: Minimum stack height shall be 30 meters above ground.						and.		
		For Boilers: Stack Height H=14(Q) ^{0.3} Details of stack results along with its height data is no. 26) Gaseous emissions from process units a monthly basis.						- ,		
		During the report period no case varies from standard.								

	The gaseous emission from the DG sets shall be dispersed through stack of adequate height as per CPCB standards.	Complied. The gaseous emission from the DG sets is being dispersed through stack of adequate height as per CPCB standards given below: The minimum height of stack is provided using the following formula (ref. CPCB): H = h+0.2x√KVA H =Total height of stack in meter h =Height of the building in meters where the generator set is installed KVA = Total generator capacity of the set in KVA
	Acoustic enclosures shall be provided to the DG set to control the noise pollution.	However, DG sets are being used only during emergency startups. Complied. All DG sets are having inbuilt acoustic enclosures to control the noise pollution and meeting the prescribed norms.
iii	The company shall upload the status of compliance of stipulated environmental clearance conditions including results of monitored data on its web site.	conditions including results of monitored data is posted on our web site. And it
	Status of compliance of stipulated environmental clearance conditions to be sent to Regional office of MoEF, the respective Zonal office of CPCB and the state pollution control board.	conditions are regularly submitted to the regional office of MoEF, zonal office of CPCB and state pollution control board.

The criteria pollutant levels namely; SPM, RSPM, SO2, NOx (ambient levels as well as Stack emissions) or critical sectorial parameters like VOC, indicated for the project shall be monitored and displayed at a convenient location near the main gate of company in the public domain.

Complied. The critical pollutants parameters namely; SPM, RSPM, SO₂, NOx are monitored regularly on monthly basis and displayed at board at the company entrance.

Details of stack results, ambient air monitoring and VOC measured in fugitive emission is given in **Table 2, 3 and 4** respectively. (Pl. see pg. no. 26,30,32)

The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Stack results:

No.	Parameter	Standard values as	Unit	Values for the period Dec 16-May 17			
		per CCA		Min.	Max.	Avg.	
1	SO ₂	40	mg/Nm³	2.5	7.2	5.2	
2	SO ₂ (kg/T)	2	kg/T	0.5	0.8	0.7	
3	NOx	25	mg/Nm³	4.6	12.4	7.6	
4	HC1	20	mg/Nm ³	4.3	7.2	5.7	
5	PM	150	mg/Nm ³	4.6	28	11.6	
6	PM with Pesticide compound	20	mg/Nm ³	3.1	6.4	5.0	

Summary of Ambient Air Quality results:

Station	Parameter	Limit microgm/NM ³	Values for the period Dec 16- May 17		
			Min.	Max.	Avg.
66 KV	RSPM (PM2.5)	60	26	29	27.3
	PM10	100	55	59	57.3
	SO2	80	10.2	11.8	10.8
	NOx	80	10.8	12.6	11.6

	٠ .	1050	NID	NID	NID
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Opposite	RSPM (PM2.5)	60	34	38	35.8
Shed D	PM10	100	52	60	56.8
	SO2	80	10.2	10.8	10.5
	NOx	80	11.2	12.2	11.6
	Ammonia	850	14.2	16.4	15.5
	HC1	200	ND	ND	ND
Near West	RSPM (PM2.5)	60	32	38	35
site ETP	PM10	100	54	62	58.2
	SO2	80	11.2	12.4	11.5
	NOx	80	12.3	13.2	12.7
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Near North	RSPM (PM2.5)	60	31	39	35.7
ETP	PM10	100	51	59	54.7
	SO2	80	10.2	11.8	10.9
	NOx	80	11.4	12.8	12.1
	Ammonia	850	10.6	13.4	11.8
	HC1	200	ND	ND	ND
TSDF	RSPM (PM2.5)	60	35	39	36.7
	PM10	100	52	66	59.7
	SO2	80	10.2	12.4	11.7
	NOx	80	11.4	13.8	12.5
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Main Guest	RSPM (PM2.5)	60	20	29	25.5
House	PM10	100	43	51	47

 	Taba	100	100	10.0	107
	SO2	80	10.2	10.8	10.7
	NOx	80	11.2	12.8	11.8
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Wyeth	RSPM (PM2.5)	60	22	28	24.8
Colony	PM10	100	45	51	47.7
	SO2	80	9.2	11.4	10.5
	NOx	80	10.4	11.8	11.7
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Gram	RSPM (PM2.5)	60	20	24	22
panchayat hall	PM10	100	41	48	44.7
nan	SO2	80	9.2	11.6	10.7
	NOx	80	9.6	12.2	10.7
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Main office	RSPM (PM2.5)	60	26	33	28.8
North site	PM10	100	54	62	57.7
	SO2	80	11.2	12.3	11.6
	NOx	80	12.2	13.4	12.8
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Haria water	RSPM (PM2.5)	60	21	29	24.7
tank	PM10	100	42	54	47.7
	SO2	80	7.2	11.6	8.8
	NOx	80	9.2	12.4	10.6
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND

Summary	of VOC resu	lts:				
Plant	Area	Parameter	Prescribed Limit	Values of VOCs in Milligram per NM ³ for t period Dec 16-May 17		
				Min.	Max.	Avg.
2,4 D	Reactor	Phenol	19	0.096	0.204	0.145
	Buffer tank	Chlorine	3	0.108	0.161	0.137
Resorcinol	Benzene storage tank area near vent	Benzene	15	1.04	2.92	1.76
	Near Extraction /scrubber unit	Butyl acetate	-	ND	ND	ND
Pharma	At second floor work area	Ammonia	0.8	0.71	0.95	0.81
	Ammonia recovery area	Ammonia	0.8	0.69	0.84	0.75
Epoxy - I	At vacuum pump 2nd floor	ECH	10	6.92	8.71	7.83
	At vessel POS 1208 G.F	ECH	10	7.15	8.71	8.16
Shed H	At second floor work area	Nitrobenzene	5	0.437	3.76	1.97
Shed J	Buffer Tank	Chlorine	3	0.114	0.296	0.18

iv The company shall adopt cleaner production technology to minimize the quantity of fresh water requirement and process effluent generation.

Complied.

Company is fully devoted towards protection of environment and has successfully completed many cleaner production projects and will continuously improve further.

We have already converted few of our plants as ZLD and are in process of converting many other plants as ZLD. Our Ankleshwar unit is completely ZLD unit.

Treated wastewater is being used in lime preparation at ETP, steam condensate is being collected and used in place of raw water, vacuum pump, gland cooling and other water is being collected and reused. Vacuum pumps are removed by installing centrifuge in place of neutch filter and water consumption is reduced. Cooling tower blow down water is used as fire hydrant make up and also used for dust suppression and fly ash quenching instead of fresh water. Water used for washing purpose is reused.

Details of water consumption break up is given below:

Details of water consumption:

Water Consumption Break up m ³							
Period	Water co	nsumption	sumption in				
	Process	Cooling	Domestic				
Dec-16	240644	21667	12358	274669			
Jan-17	245548	21568	15256	282372			
Feb-17	219370	17680	11253	248303			
Mar-17	245349	20625	12840	278814			
Apr-17	237635	19536	12958	270129			
May-17	238718	28084	14042	280844			

The company shall obtain Authorization for Collection; Storage and Disposal of Hazardous waste under the hazardous waste management

 \mathbf{v}

Complied. We have obtained authorization for our own TSDF through GPCB notification no. GPCB/HAZ/GEN-55/9647 dated 13th March 2000 and NOC no. CTE-65621 dated 19/11/2014. Also we have valid authorization under our

	(Handling and trans boundary movement rule-	current CCA No. AWH-67717 for handling, storage and disposal of hazardous				
	2008) for management of hazardous waste and	waste.				
	prior permission from GPCB shall be obtained for disposal of solid waste in the TSDF.	Copy of the same was submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4.4.17.				
	The concerned company shall undertake					
	measures for the firefighting facility in case of	system and trained staff, emergency response team(ERT) of trained workers,				
	emergency.	power supply from two source with emergency backup power provision from DG				
		set as well grid and detailed on-site emergency plan. Mock drills are also carried				
		out at regular interval.				
vi	The project authorities shall strictly comply	Complied . We are complying with all the requirement of MSIHC rule 1989 as				
V1		amended in October, 1994 and January, 2000 and having proper storage and				
	8					
	manufacturing, storage and import of	handling system, Onsite emergency plan, Licenses, reporting, etc.				
	hazardous chemicals rule 1989 as amended in	The company complies with all stipulated norms of act made in CCA by GPCB				
	October, 1994 and January, 2000.	are being complied. Latest compliance report by GPCB appointed Environmental				
		auditor Shroff S R Rotary Institute of Chemical Technology, Vatariya, Dist.				
		Bharuch for year 16-17 is attached as Annexure 1 .				
	All Transportation of Hazardous chemicals shall	Complied . Transportation of Hazardous chemicals are being done as per the				
	be as per the MVA, 1989.	MVA rule 1989. TREM (Transport Emergency) card and MSDS of chemicals are				
		provided to transporter.				
vii	The company shall undertake waste	Complied . All the liquid ingredients are being charged through measure vessels				
	minimization measures :	and/or flow meters to control on quantity as per the stoichiometry. All the solid				
	minimization incasures.	ingredients are charged after proper weighment only. All these meters and				
	Metering and control of quantities of active	weighing machines are calibrated and records are maintained.				
	ingredients to minimize waste.	weighing machines are canstated and records are maintained.				
	3 · ··································					
	Reuse of by products from the process as raw	Complied . Sodium Sulfate, Sodium Thio Sulphate, Brine, MEE salt, Sodium				
	materials or as raw material substitutes in other	hypochlorite, Copper Hydroxide, spent acid, etc. are few by-products from the				
	processes.	process which are being sold for using the same either as raw material or as				
		substitute to raw materials. Also, fly ash and Gypsum are being used as raw				
		material for Brick Manufacturing. Sodium Hypochlorite, Sodium hydro sulfide,				
		etc. are being used as raw material in other processes.				
	Use of automated filling to minimize spillage.	Complied . Automated filling system for our agro products, polymers, resorcinol,				
		dyes for small and bulk packing is provided to minimize spillage.				
		ajos isi sinan ana sam pasimis is provided to iminimize spinase.				
-						

	Use of 'close feed' system into batch system.	Complied . Chemicals and solvents are handled in close handling system through pipe lines only.
	Venting equipment through vapor recovery system.	Complied . All the reactors are equipped with vents/stacks, which are connected to either vapor recovery system consisting of condensers, ejector/vacuum pumps and/or scrubbers. Genosorb technology for solvent vapor recovery is also installed and working perfectly.
	Use of high pressure hoses for equipment cleaning to reduce wastewater generation.	Complied . Many equipment like reactors, spray dryers, condenser wherever necessary are being cleaned with high pressure sparger / jet to reduce waste water generation.
viii	Fugitive emissions in the work zone environment, product, raw material storage area shall be regularly monitored. The emission	Complied . Fugitive emissions in the work zone environment and raw material storage area is being regularly monitored by NABL approved third party.
	shall conform to the limits imposed by I.	Data for the reporting period is given in Table 4 (Pl. see pg. no.32). Besides this online monitors in work area for parameters like Chlorine, HCl, Phosgene are also installed.
		The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Summary is given in specific condition iii.
ix	The project authority shall provide chilled brine solution in secondary condenser for condensation of the VOCs.	Complied . All the VOCs/solvent recovery systems are attached with chilled brine solution in secondary condenser for condensation of VOCs.
	The project authority shall ensure that solvent recovery shall not be less than 95%	Complied . On an average solvent recovery is 96%.
	The VOC monitoring shall be carried in the solvent storage area and data submitted to the Ministry.	Complied . We are monitoring VOC as well as other chemicals in work area as per Factories Act and records are being maintained in For No. 37. VOC monitoring in solvent storage area is being done and data are submitted through EC compliance report.
		Data for the report period is given in Table 4. (Pl. see pg. no.32)
х	Solvent management shall be as follows: Reactor shall be connected to chilled brine condenser system.	Complied . All the reactors handling solvent are connected/attached with chilled brine condenser for solvent recovery.

	Reactor and solvent handling pump shall have mechanical seals to prevent leakages.	Complied . All the reactors and pumps handling solvent are equipped with mechanical seals to prevent leakages.
	The condensers shall be provided with sufficient HTA and residence time so as to achieve more than 95% recovery.	Complied . The condensers provided are properly designed with respect to HTA and Residence time to achieve more than 95 % recovery. As mentioned above, average 96 % solvent recovery is being achieved.
	Solvents shall be stored in a separate space specified with all safety measures.	Complied . Solvents are stored in tank farms in separate tanks with proper earthing, flame arresters, lightening arresters, fencing, Fire hydrant system, Fire extinguishers, flame proof equipment, etc. safety measures.
	Proper earthing shall be provided in all the electrical equipment wherever solvent handling is done.	Complied . Double earthing is provided and regular checking and testing of the same is being done and recorded.
	Entire plant shall be flame proof.	Complied . Plants are equipped with Jumpers, flame proof electrical fittings and proper earthing as per the Hazardous area classification of PESO.
	The solvent storage tanks shall be provided with breather valve to prevent loses.	Complied . Breather valves have been provided to all the solvent storage tanks to minimize the loses.
хi	Hazardous chemicals shall be stored in tanks in tank farms, drums, carboys etc.	Complied . Hazardous chemicals are being stored in tanks, drums and carboys considering the storage quantity and chemical stored.
	Company shall develop an area of 33% green belt and selection of plant species shall be as per the guideline of CPCB.	Complied . Company has developed green belt and dense plantation inside and outside the factory in more than 33 % of total land. Company is having green belt development plan and planting more than about 50000 plants per year on regular basis. Green belt map is attached herewith.

xii	The company shall harvest surface as well as rain water from the roof tops of the building and storm water drain to recharge the ground water	rain water, which is the almost 75% of our per day requirement.					
	and use the same water for the various activities of the project to conserve fresh water.	water wit		cater our consumption with during the rainy days. Best acility to harvest rain water.			
			construct temporary sand b to store additional free flow	ag dam on top of dam towa ing rain water in river Par.	urds the end of		
		In additionabore wells	•	rater and roof top water is us	sed to recharge		
		We have harvest 632615 KL rain water during last season.					
xiii	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.	_	asis and record maintained	veillance of the workers is as per the factory act which	_		
		Sr. No.	Month of Examination	Total No. of Employees			
		1	Quarter 4 (16-17)	843			
		2	Quarter 1 (17-18)	1673			
B. Ge	eneral Conditions:						
i	The project authorities shall strictly adhere to the stipulations made by the State Pollution Control Board.	stipulatio	n. This has been certified by	the compliances and has no our Environmental auditors ough Environmental audit ev	, an authorized		
		Rotary In	1 1	opointed Environmental aud ogy, Vatariya, Dist. Bharuch			
ii	No further expansion or modification in the plant shall be carried out without prior approval of the Ministry of Environment and Forests.	_	Last expansion of Pesticide and Synthetic Organic Chemicals was done in 2009 for which referred EC has been sought.				

	In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	Thereafter we have planned for the expansion in various existing product and introduction of new products for which we have applied for EC on 17.4.2015. Our EC application is under consideration. Expansion will be done only after getting EC.
iii	At no time, the emissions shall exceed the prescribed limits.	Complied. Monthly monitoring is being done by NABL approved third party. At no time, the emissions exceeded the prescribed limits during report period. Summary of stack results given in specific condition no. iii.
	In the event of failure of any pollution control system adopted by the units, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieved.	Complied . No such case happened during compliance period. Whenever such incident of failure of pollution control system happened, we will stop the operation and rectify the problem and then only restart.
iv	The Gaseous emission (NOx, HCl, SO2 and SPM) and Particulate matter along with RSPM levels from various process units shall conform to the standards prescribed by the concerned authorities from time to time.	Complied . The gaseous emissions (SO ₂ , NOx, and HCl) and particulate matters from various process units confirms to the standards prescribed by GPCB through CCA. Details of stack results for the compliance period is given in Table 2 . (Pl. see pg. no. 26)
	At no time, the emission levels shall go beyond the stipulated standards.	Complied. We will ensure that at no time emission will go beyond the standards. The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Summary of stack results given in specific condition no. ii.
	In the event of failure of pollution control system(s) adopted by the unit, the respective unit shall not be restricted until the control measures are rectified to achieve the desired efficiency. Stack monitoring for SO ₂ , NOx and SPM shall be carried.	Complied . No such case happened during compliance period. Stack monitoring for SO ₂ , NOx and SPM has been carried out and details given in Table 2 . (Pl. see pg. no. 26) Whenever such incident of failure of pollution control system happened, we will stop the operation and rectify the problem and then only restart.
v	The Location of ambient air quality monitoring stations shall be decided in consultation with	Complied . The Location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the

	state pollution control Board and it shall be ensured that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated.	concentr CPCB &		
		No.	Location	
		1	66 KVA GEB substation	
		2	Opposite Shed D	
		3	Near ETP (West Site)	
		4	ETP Plat (North site)	
		5	Near TSDF	
		6	Near Main Guest House	
		7	At Wyeth Colony	
		8	Gram panchayat hall	
		9	Near Main office, North site	
		10	Water tank at Haria Road	
		Details o	f ambient air quality results is giv	en in Table 3 . (Pl. see pg. no. 30)
vi	Dedicated Scrubbers and stacks of appropriate	Complie	d. Dedicated Scrubbers with stace	cks of appropriate height (as per the
	height as per the central pollution control board			have been provided to control the
	guideline shall be provided to control the			ack results along with its height data
	emission from various vents.		in Table 2 . (Pl. see pg. no. 26)	TOTAL CONTRACTOR
	The scrubber water shall be sent to ETP for	Complie	d. The scrubber water is being ser	nt to ETP for further treatment.
	further treatment or sell to actual end users.	01:-	4 To 1-14 A	
1	The overall noise level in and around the plant area shall be kept well within the standard by	_	· · · · · · · · · · · · · · · · · · ·	encer and insulation are provided on r all noise level within the stipulated
	providing noise control measures including		ls like turbine, DG set, etc.	an noise level within the supulated
	acoustic hoods silencers, enclosures etc. on all	Standard	io ince turbine, Do oct, etc.	
	source of noise generation.			

The ambient noise level shall confirm to the standards prescribed under Environment(Protection) Act-1986 Rules,1989 viz 75 dBA (day time) and 70 dBA (night time)

Complied. The ambient noise level confirm to the standard prescribed under EPA. The same is being regularly monitored and its details are given in **Table 5** and **6**. (Pl. see pg. no. 33)

The maximum values during the compliance period confirms that at no time the noise emission level went beyond the stipulated standards. Summary is given below:

Noise level monitoring data (Day Time)

Sr. No.	Location	Permissible Limits, dBA	Values for the period Dec 16-May 17			
		75	Min.	Max.	Avg.	
1	Near Main guest house	75	56	66	61	
2	Near TSDF	75	60	64	62	
3	At Wyeth Colony	75	57	62	60	
4	Gram Panchayat Hall	75	55	63	58	
5	Near Main Office North site	75	62	66	64	
6	ETP North site	75	67	69	68	
7	Opposite shed D	75	65	69	67	
8	ETP West site	75	63	68	66	
9	Water tank Haria road	75	58	64	61	
10	Near 66KVA substation	75	55	59	58	

Noise level monitoring data (Night Time)

Sr. No.	Location	Permissible Limits, dBA			for the period May 17		
		70	Min.	Max.	Avg.		
1	Near Main guest house	70	51	61	56		
2	Near TSDF	70	53	59	57		

		3 1	At Wyeth Colony	70	50	56	53						
			Gram Panchayat Hall	70	51	57	53	-					
			Near Main Office North site	70	56	61	58	-					
		6	ETP North site	70	59	64	61	-					
			Opposite shed D	70	58	63	61	1					
			ETP West site	70	56	63	61						
		9	Water tank Haria road	70	55	-							
		10	Near 66KVA substation	70	50	56	53						
							1	<u> </u>					
::: /7	M	0 19 -	1 0			1	. 11	1					
	Training shall be imparted to all employees on safety and health aspects of chemicals												
	handling.	handling. Safety precautions and hazards are also being communicated through											
		display boards at appropriate places in the plants.											
F	Pre-employment and routine periodical medical		d . Pre medical checkup ar			neckup for	the emp	loyees					
I I	examination for all employees shall be	is being	done on regular basis (Six	monthly).									
u	undertaken on regular basis.	Doto ore	submitted in below table										
			submitted in below table	•			_						
		Sr. No.	Month of Examination	Total No	o. of Em	ployees							
		1	Quarter 4 (16-17)	843									
		2	Quarter 4 (16-17) Quarter 1 (17-18)	843 1673									
ix (Usage of PPE's by employee/ workers shall be	2	, ,	1673	nd is st	rictly follo	wed. Cor	npany					
e	ensured.	2 Complie is provid	Quarter 1 (17-18) d . Company have PPE poling adequate PPEs to all the	1673 icy in place a ne employees		, and the second		1 0					
x 7	ensured. The project proponent shall also comply with all	2 Complie is provid Complie	Quarter 1 (17-18) d. Company have PPE poling adequate PPEs to all the d. Company has complete.	1673 icy in place a ne employees ied with all	the e	nvironmer	ıtal prot	ection					
x 7 t	ensured. The project proponent shall also comply with all the environmental protection measures and	2 Complie is provid Complie measure	Quarter 1 (17-18) d . Company have PPE poling adequate PPEs to all the d. Company has comples and safeguards pro-	1673 icy in place a ne employees ied with all	the e	nvironmer	ıtal prot	ection					
x 7	ensured. The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted	2 Complie is provid Complie measure	Quarter 1 (17-18) d. Company have PPE poling adequate PPEs to all the d. Company has complete.	1673 icy in place a ne employees ied with all	the e	nvironmer	ıtal prot	ection					
x 7 t	ensured. The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry.	2 Complie is provid Complie measure recomme	Quarter 1 (17-18) d. Company have PPE poling adequate PPEs to all the d. Company has complete and safeguards promote and safeguards promote and safeguards.	icy in place a ne employees ied with all oposed in	the e	nvironmer port apa	ntal prot art from	ection the					
x 7 t s	ensured. The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry. All the recommendation made in respect of	Complie is provid Complie measure recomme	Quarter 1 (17-18) d. Company have PPE poling adequate PPEs to all the d. Company has comples and safeguards produced their in. R didn't suggest for EIA of	icy in place a ne employees ied with all oposed in or public hear	the entering the the reserving the the reserving the the the the the the the the the the	nvironmer port apa	ntal prot	ection the ations					
x 7 t s	ensured. The project proponent shall also comply with all the environmental protection measures and safeguards proposed in project report submitted to the ministry.	Complie is provid Complie measure recomme	Quarter 1 (17-18) d. Company have PPE poling adequate PPEs to all the deciral safeguards and safeguards produced and their in. R didn't suggest for EIA ced. However, we are communications and their in.	icy in place a ne employees ied with all oposed in or public hear	the entering the the reserving the the reserving the the the the the the the the the the	nvironmer port apa	ntal prot	ection the					

		for th	ne referred project is given below	w:
		No.	Recommendation	Compliance
		1	Liquid incinerator also to be refurbished.	Complied. However, We have been segregating high COD streams (COD >50000 ppm) and same is being taken for recovery to get economic benefit. Rest lean effluent of COD <2000 ppm is finally sent to ETP for treatment. Hence no incineration required for
				high COD wastewater.
		2	Online pH and DO measuring arrangement in aeration tank	Complied. Online pH and DO monitoring available.
		3	ETP lab should be equipped with auto sampler, auto titrator, COD digester etc.	Complied. Our ETP lab has 5 nos. of auto samplers for various stages sample collections. The lab also have COD digesters.
		4	Explore possibility of more efficient mode of aeration	Complied. We have replaced our surface aerators with more efficient jet aerators.
		5	Company shall initiate rain water harvesting projects	Complied. Company has recently constructed 6000 KL capacity pond to harvest rain water, which is the almost 75% of our per day requirement.
		6	Change fuel (CNG) in Incinerator	Complied. We use CNG at our incinerator.
		7	Auto pH control system at new Incinerator plant.	Complied. Auto pH control system installed and being working at new Incinerator plant.
				Atmiya Institute of Technology, Rajkot 2010)
хi	The company will undertake all relevant			ctivities through its Atul Rural Development
	measures for improving the socio economic			d for up gradation of surrounding area and
	condition for the surrounding area, CSR		•	CSR activities carried out in nearby villages
	activities will be undertaken by involving local		schools is given below table : CSR activities during 16-17	
	villages and administration:	No.		
			Distributed 11630 note books, 23 students of 23 primary school students	735 pencils, erasers, and ball pen etc. to udents.
		2	Set up library at Sarvajanik Mad Library.	hyamik Shala Parnera, Supply of Furniture for

xii	The company shall undertake developmental measures including communication welfare measures in the project area for overall improvement of the environment.	unity	aplied as mentione	d in xi above.	
			017-18 (budgeted)	750	
		2	016-17 (actual)	660	
		F	inancial year	Amount (Rs. in lakhs)]
		belo	w:		
			J 1	se occurred in CSR activit	ies for last three years is listed
		15	7 eye camps organi	ized and Total 2073 patients	covered during eye camps.
		14	15 Blood donations	s camp organized and total 1	319 units blood collected.
		13	Distribution of ferticouples)	ilizer to Farmer Haria Khedu	t Mandal , Haria project (104
		12		akti Shed and Temple Binwa	9
		11	Abhiyan.	to Dived village under the sc	
		10	J	provided to Parnera Village.	1 (0 1 11 71
		9	Dungri , Anjalv, Ch		ived, Chanvai, Haira, Magod s completed in the 2016 -17.
		8	and distribution of	Blank ket.	e repair and construct of cluster
		7	U	Mass Marriage at Chadra Mo	-
		6			n Shala, Moti Korvad, d to approx. 2000 tribal people
		5	Authority.	rimary school Haria village as	-
		4	Construction of Co	mpound wall at Primary Sch	ool Magod Dungri .
		3	Food Material supposed month including co		ralaya Mama Bhacha , every

xiii	A Separate environmental management cell equipped with full flagged laboratory facility shall be set up to carry out the environmental management and monitoring function.	equipped with full-fledged management and monitor. Research Lab is also estal aspects related to environ Environment Health & Sa developed a separate laborate meter, COD meter, Glass with furnace, etc. to carry out to testing is carried out by GPC	naving separate Environme laboratory facility to carring functions. Apart from plished for research work functions attached as Anne tory equipped with equipment and its remedial meaters, gas chromatography sesting of routine parameters CB approved and company appreasured in-house are pH,	this, one Environthis, one Environthe study of seasures. Organoge exure 2. Comparent such as pH metoystem, and oven, . However sampling pointed consulta	onment various gram of ny has er, TDS, muffle ing and nt also.
xiv	The project authorities shall earmark adequate funds to implement the conditions stipulated by the Ministry of Environment and Forest as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purposes.	already been at place. Non recurring cost: Rs. 5. Recurring cost: A separate all the legal requirement sti	o Cr budget is being allocated e pulated by SPCB, CPCB & I and facilities. Total expendi	very year to comp	oly with upkeep
		Expenditure for months	Particular	Expenses Rs.	
			Fuel	472813	1
			Chemicals(Raw Material)	60425438	1
		December-2016 to May-	Electricity	22627394	1
		2017 Including, recurring	Waste disposal	14463925	1
		maintenance, modifications and monitoring.	Salary	13912288	
		and monitoring.	Maintenance & modifications	15922789	
			Monitoring	1882235	
			Total	129706881	
xv	A copy of the clearance letter shall be sent by	Complied. Latest submission	on to the Panchayat, Zila par	ishad. District Inc	dustrial

	the proponent to concerned Panchayat, Zila	
	parishad/Municipal Corporation. Urban local	Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4.4.17.
	body and the local NGO, if any, from who	
	suggestions/representation, if any, were	
	received while processing the proposal.	
	The clearance letter shall also be put on the web	Complied . Available at company's website at
	site of the company by the proponent.	http://www.atul.co.in/sustainability/pdf/Atul-Environmental-Clearance-for-
		expansion-2009.pdf
xvi	The implementation of the project vis-à-vis	Complied . SPCB and MoEF is monitoring through their regular visits.
	environmental action plan shall be monitored	
	by Ministry's Regional office at Bhopal / SPCB	
	/ CPCB.	
xvii	The Project Proponent shall inform the public	We informed the public through advertisement and by sending our EC to local
	that the project has been accorded	Panchayat, Zila parishad, District Industrial Centre for further actions at their
	environmental clearance by the Ministry and	end.
	copies of the clearance letter are available with	
	the SPCB/Committee and may also be seen at	
	website of the Ministry of Environment and	
	Forest at http://www.envfor.ni.in .	
	This shall be advertised within seven days from	Advertisement was published as directed and copy of the same was submitted to
	the date of issue of the clearance letter at least	Ministry vide our letter dated 14.11.2009.
	in two local newspaper that are widely	
	circulated in the region of which one shall be in	
	the vernacular language of the locality	
	concerned and a copy of the same shall be	
	forwarded to the concerned Ministry's Regional	
	office at Bhopal.	
xviii	The project authorities shall inform the	Complied.
	Regional Office as well as the Ministry, the date	Start date : May 2009
	of financial closures and final approval of the	Completion date: May 2010
	project by the concerned authorities and the	Final approval : We have obtained NOC and CCA from GPCB.
	date of start of the project.	Company has funded the project internally and hence not submitted the
		financial closure details.
		inancial closure details.

8	The Ministry may revoke or suspend the clearance if implementation of any of the above conditions is not satisfactory.	Noted.
9	The Ministry reserves the right to stipulate additional conditions, if found necessary. The company in a time bound manner will implement these conditions.	Noted and will be complied.
10	Any appeal against this Environment clearance shall lie with the national appellate authority, if preferred, within a period of 30 days as prescribed under section 11 of National Environment Appellate Authority Act, 1997.	
11	The above conditions will be enforced, inter-alia under the provisions of the Water (Prevention and Control of Pollution) Act, 1974 the Air ((Prevention and Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986, Hazardous Wastes (Management, Handling and Transboundry movement) Rules, 2008 and the Public Liability Insurance Act, 1991 along with their amendments and rules.	Noted.

Table 1: Quality of treated effluent

Sr. No.	Parameter			Resi	ılts			GPCB Limits
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	
1	pН	7.2	7.3	7.18	8.14	7.2	7.1	5.5-9.0
2	Colour (Pt. Co. Scale)	68	66	86	84	56	58	
3	Temperature (°C)	26	28	26	28	29	30	40
4	Suspended Solids	52	48	46	72	64	68	100
5	Phenolic Compounds	0.4	0.7	1.86	0.48	0.7	0.5	5.0
6	Cyanide	ND	ND	ND	ND	ND	ND	0.2
7	Sulphide	ND	ND	ND	1.08	0.6	0.2	2.0
8	Ammonical Nitrogen	42	40	3.92	16.32	32	36	50
9	BOD	36	35	28.3	18.54	37	40	100
10	COD	221	216	221.5	238.9	212	226	250
11	Hexa. Chromium Cr ⁺⁶	ND	ND	ND	ND	ND	ND	1.0
12	Total Chromium Cr ⁺²	0.2	0.1	0.76	0.73	0.1	0.2	2.0
13	Fluorides	ND	ND	ND	ND	ND	ND	2.0
Note · N	ND is not detectable. Unit of mea	esurement is mg/1	else specifi	ed	•	•		

Note: ND is not detectable. Unit of measurement is mg/l else specified.

Table 2 :	Stack Monitoring Details															
Sr. No.	Stack Details	Permissible Limits	Stack Height m	Paramenter	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
Atul East	Site															
1	Phosgene Plant	0.1 ppm	15	Phosgene	1/12/2016	ND	1/1/2017	ND	2/2/2017	ND	2/3/2017	ND	3/4/2017	ND	16/5/17	ND
		**														
2	Dechlorination Plant	9.0 mg/Nm3	35	CI 2	16/12/2016	4.6	11/1/2017	5.2	2/2/2017	5.5	24/3/17	5.2	10/4/2017	4.8		Not Runnig
		20.0 mg/Nm3		HCI		5.6		6.3		6.1		5.8		5.6		During Visi
3	Common stack of Hcl Sigri	9.0 mg/Nm3	25	CI 2		5.2		5.8		5.3		6.2		5.2		
	unit 1& 2	20.0 mg/Nm3		HCI		4.8		6.1		5.7		5.9		6.2		
FCB																
4	Foul Gas Scubber	40.0 mg/Nm3	26.5	SO2	_	Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig		Not Runnig
		25.0 mg/Nm3		NOx						Runnig						
Sulfuric A	Acid (East Side)															1
5	Sulfuric Acid plant	2.0 kg/T	30	SO2	7/12/2016	0.7	12/1/2017	0.8	3/2/2017	0.7	22/3/17	0.6	17/4/17	0.5	17/5/17	0.6
		50.0 mg/Nm3	1	Acid Mist		5.3	1	5.6		6.2	1	6.1	1	6.4		6.3
6	ChloroSulfonic Acid plant	9.0 mg/Nm3	11	CI 2		6.2		6.4		6.1	1	5.8	1	5.1		5.5
	reactor	20.0 mg/Nm3		HCI	<u> </u>	5.9	<u> </u>	5.7		5.3		5.5		5.7		5.4
Incinerat	or															
7	Incinerator	150.0 mg/Nm3	40	PM	18/12/2016	20	12/1/2017	22	17/2/2017	24	15/3/17	26	17/4/17	28	10/5/2017	26
		40.0 mg/Nm3		SO2		4		5		6		2.5		2.8		2.9
		25.0 mg/Nm3		Nox		12.2		11.3		12.4		11.7		12.2		11.8
NI Plant																
8	Foul Gas Scubber	40.0 mg/Nm3	26.5	SO2	29/12/2016		13/1/17	6.1	4/2/2017	6.5	9/3/2017	6.1	24/4/17	6.2	22/5/17	5.8
		25.0 mg/Nm3		Nox		4.6		5.3		5.7		5.3		5.7		5.2
NBD Plan																
9	Spray Dryer	150.0 mg/Nm3	21	PM		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visi
2-4-D Pla	nt							+		₹7:-:4		+				+
10	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12	10/12/2016	5.4	25/1/17	6.2	22/2/17	5.8	17/3/17	5.2	25/4/17	6.2	18/5/17	6.8
	, , , , , , , , , , , , , , , , , , ,	20.0 mg/Nm3		HCI		5.8		5.4	1,-,	5.2	1 . , . ,	5.7	1 , , , , ,	7.1	1,-,	7.2
11	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12	1	4.8		5.8	1	6.1	1	5.5	1	5.8		5.6
		20.0 mg/Nm3		HCI	-	6.2	-	6.5	1	6.8	-	6.4	1	6.2	-	5.8
12	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	Cl2	9/12/2016	2.2	-	2.5	16/2/17	2.8	18/3/17	2.5	24/4/17	2.7	19/5/17	2.6
1	Cinormator, 2, 1 B plant	20.0 mg/Nm3	20.0	HCI	7,12,2010	4.3	1	5.1	10/2/17	5.4	10/0/1/	5.1	21/1/1/	5.4	15/5/17	5.6
13	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	Cl2	-	3.8	26/1/17	3.4	1	3.7	1	3.5	1	3.8	1	3.6
	Cinormator, 2, 1 B plant	20.0 mg/Nm3	20.0	HCI	1	5.2	20,1,1.	4.8	1	5.1	1	5.8	1	5.2	1	5.8
14	Chlorinator, 2,4 D plant	9.0 mg/Nm3	26.5	C12	1	2.8	-	3.6	1	3.8	1	3.6	1	3.1	1	3.4
		20.0 mg/Nm3		HCI	1	5.4		5	1	5.6	1	5.4	1	5.1	1	5.4
15	Common Scrubber; 2,4D	9.0 mg/Nm3	5	C12	1	2.6		2.8	1	3.2	1	3.1	1	2.9		3.2
	Plant	20.0 mg/Nm3		HCI	1	5.6		5.4	1	6.2	1	6.5	1	6.2		6.8
16	Dryer-1	20.0 mg/Nm3	26.5	PM with	1	3.8	27/1/17	3.4	1	3.7	1	3.4	1	3.3		3.6
		<u> </u>		Pesticide			' '	1				1		1		
17	Dryer-2	20.0 mg/Nm3	26.5	PM with Pesticide	=	5.2		5.6	-	6.4		6.2	-	5.8		6.4
18	Dryer-3	20.0 mg/Nm3	26.5	PM with Pesticide	8/12/2016	3.6		3.1	=	3.5		3.5	•	3.2	1	3.4
19	Dryer-4	20.0 mg/Nm3	26.5	PM with Pesticide	1	5.2	1	5.3	1	5.8		5.6]	5.1	1	6.2
20	Common Scrubber; 2,4D Plant		5	Phenol	1	ND	18/1/17	ND	1	ND		ND		ND		ND
	II.	1		1			1	1				1	1		1	

Page26 of 33

CP Plan	t	Permissible Limits	Stack Height m	Paramenter	Date of Sampling	Obtained Value		Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
21	MCPA	9 mg/NM ³	19	CL_2		Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig		Not Runnig
		20 mg/NM ³	_	HCL	†	During		During		Runnig		During		During Visit		During Visit
		40 mg/NM ³		SO ₂	_	Visit		Visit		During Visit		Visit				
22	Fipronil	40 mg/NM ³	19	SO2		Not Runnig During		Not Runnig During		Not Runnig		Not Runnig During		Not Runnig During Visit		Not Runnig During Visit
		20 Mq/Nm3		HCL		Visit		Visit		During Visit		Visit				
23	Imidacloprid	175 Mg/Nm3	20	NH3		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
24	Pyrathroids	40 Mg/Nm3	19	SO2		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
		20 Mq/Nm3		HCL	1	VISIC		Visit		Visit		VISIC				
25	Stack at Amine Plant	175 Mg/Nm3	5	NH3	2/12/2016	9		Not Runnig During Visit	18/2/17	5.6	23/3/17	5.1		Not Runnig During Visit		Not Runnig During Visit
MPSL P	lant															
26	Phosgene Scrubbr at MPSL	0.1 ppm	7	Phosgene	7/12/2016	ND	17/1/17	ND	18/2/17	ND	4/3/2017	ND	5/4/2017	ND		ND
27	Central Scrubber at MPSL	0.1 ppm	7	Phosgene	7/12/2016	ND		ND		ND		ND		ND		ND
NICO P1																
28	Central scrubber at Nico Plant		12	Acetonytryle, IPA		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
Ester Pa	ılnt															
29	Scrubber at Ester plant for Glyphosate	10 Mg/Nm3	12	Formaldehyde		Not Runnig During		Not Runnig During		Not Runnig		Not Runnig During		Not Runnig During Visit	29/7/2016	2.1
30	Central Scrubber MCPA Plant	20 Mg/Nm3	19	HCL		Visit		Visit		During Visit		Visit				Not Runnig During Visit
Atul We	st Site							1			1					
31	Shed A7/14/41 Reaction pan/ D tank	2.0 mg/Nm3	19	Bromine		Not Runnig During		Not Runnig During		Not Runnig		Not Runnig During		Not Runnig During Visit		Not Runnig During Visit
		25.0 mg/Nm3		NOx		Visit		Visit		During Visit		Visit				
L		ļ	ļ	1	ļ	ļ	ļ	ļ	-	<u> </u>	1	ļ	-	Page 27 of 33	<u>!</u> 3	!

age 27 of 33

V 33 S S S S S S S S S S S S S S S S S S	Shed D Niro Spray dryer No.45 Shed D Niro Spray dryer No. 50 Shed E 7/12/49 Spray Dryer	Permissible Limits 9.0 mg/Nm3 20.0 mg/Nm3 9.0 mg/Nm3 20.0 mg/Nm3 150.0 mg/Nm3 150.0 mg/Nm3		Paramenter CI2 HCI CI2 HCI PM PM	Date of Sampling 14/12/2016 14/12/2016 1/12/2016	Obtained Value 3.8 4.8 5.2 5.6 6.2	Date of Sampling 12/1/2017 3/1/2017	5.1 4.8	Date of Sampling 16/2/17 10/2/2017	Obtained Value 4.6 5.4 5.1	Date of Sampling 9/3/2017	Obtained Value 4.2 5.1	Date of Sampling 11/4/2017	4.6 5.3	Date of Sampling 4/5/2017	Obtained Value 4.8 5.6
V 33 S 34 S N 35 S 5 36 S	Vessel Shed C5/20/15 Chlorinator Shed D Niro Spray dryer No.45 Shed D Niro Spray dryer No. 50 Shed E 7/12/49 Spray Dryer	20.0 mg/Nm3 9.0 mg/Nm3 20.0 mg/Nm3 150.0 mg/Nm3 150.0 mg/Nm3	19 19	HCI Cl2 HCI PM	14/12/2016	4.8 5.2 5.6] ' '	5.1 4.8		5.4	9/3/2017	5.1	11/4/2017	5.3		5.6
V 33 S 34 S N 35 S 5 36 S	Vessel Shed C5/20/15 Chlorinator Shed D Niro Spray dryer No.45 Shed D Niro Spray dryer No. 50 Shed E 7/12/49 Spray Dryer	20.0 mg/Nm3 9.0 mg/Nm3 20.0 mg/Nm3 150.0 mg/Nm3 150.0 mg/Nm3	19	Cl2 HCI PM	14/12/2016	4.8 5.2 5.6	3/1/2017	4.8		5.4]		, ,	5.3		
34 S N S 5 S 5 S S S S S S S S S S S S S S	Shed D Niro Spray dryer No.45 Shed D Niro Spray dryer No. 50 Shed E 7/12/49 Spray Dryer	20.0 mg/Nm3 150.0 mg/Nm3 150.0 mg/Nm3	19	HCI PM		5.6	3/1/2017		10/2/2017	5.1						
35 S S S S S S S S S S S S S S S S S S S	No.45 Shed D Niro Spray dryer No. 50 Shed E 7/12/49 Spray Dryer	150.0 mg/Nm3 150.0 mg/Nm3		PM	1/12/2016				/ //	5.1	1	5.8		5.2	5/5/2017	5.4
35 S S S S S S S S S S S S S S S S S S S	No.45 Shed D Niro Spray dryer No. 50 Shed E 7/12/49 Spray Dryer	150.0 mg/Nm3			1/12/2016	6.2		5.3		5.8	1	5.2		5.9		5.2
36 S	50 Shed E 7/12/49 Spray Dryer	G,	19	PM	1		12/1/2017	5.8	18/2/17	5.3	16/3/17	5.1	12/4/2017	5.6	4/5/2017	4.6
37 S	, , , , ,	150.0 mg/Nm3				Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		5.9		5.3
V			19	PM		Not Runnig During Visit	11/1/2017	6.4	10/2/2017	6.1	17/3/17	6.3		6.1	11/5/2017	5.7
	Shed F 6/1/15 Reaction	9.0 mg/Nm3	19	C12	1	Not Runnig		Not Runnig		Not		Not Runnig		Not Runnig	12/5/2017	5.3
38 S	Vessel	20.0 mg/Nm3	-	HCI	+	During Visit		During Visit		Runnig During Visit		During Visit		During Visit		6.2
	Shed G 10/8/1 (receiver)	9.0 mg/Nm3	19	C12	1	Not Runnig		Not Runnig	1	Not		Not Runnig		Not Runnig		Not Runnig
		20.0 mg/Nm3		HCI		During Visit		During Visit		Runnig During Visit		During Visit		During Visit		During Visit
39 S	Shed H 1/6/17 Chlorinator	9.0 mg/Nm3	19	C12	2/12/2016	3.1	12/1/2017	Not Runnig	1	Not	1	Not Runnig		Not Runnig	22/5/17	4.2
		20.0 mg/Nm3		HCI		5.7		During Visit		Runnig During Visit		During Visit		During Visit		5.6
40 S	Shed K K-13/3/4 Final of	2.0 kg/T	19	SO2	1	0.8		0.6	17/2/17	0.7	16/3/17	0.6	19/4/17	0.7	23/5/17	0.6
	Sulfuric acid plant	50.0 mg/Nm3		Acid Mist	†	4		5	, ,	6	1 , , ,	5	, ,	6	, .,	5
Atul North	Site	3,														
	N-FDH Plant Catalytic	150.0 mg/Nm3	31.5	PM	29/12/2016	25	18/1/17	22	24/2/17	21	30/3/17	19	25/4/17	17	29/5/17	19
Ir	Incinerator	40.0 mg/Nm3		SO2	I	5.4		5.1		5.4		5.2		7.2		6.8
		25.0 mg/Nm3		Nox		5.8		5.4		5.1		5.5		6.1		5.4
		10.0 mg/Nm3		Formaldehyde		ND		ND		ND		ND		ND		ND
		0.1 ppm	15.5	Phosgene		ND	25/1/17	ND		ND		ND			30/5/17	ND
43 D	DCDPS Plant		30	SO3		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
44 D	DDS Plant	175 Mg/Nm3	20	NH3	28/12/2016	Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit		Not Runnig During Visit
45 S	SPIC II Plant		30	SO3	1	2.2	4/1/2017	2	25/2/17	2.4	10/3/2017	2.5	26/4/17	2.1	29/5/17	2.4
46 S	SPIC I Plant	175 Mg/Nm3	30	NH3	1	3.6	1	3.2	1	3.6	1	3.1		3.3	30/5/17	3.1
		<u>.</u>												0.0	00/0/1/	

Details of Fl	ue gas stack	Permissible Limits	Stack Height m	Paramenter	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value	Date of Sampling	Obtained Value
East site																
1 FE	BC boiler El	150.0 mg/Nm3	34	SPM	29/12/2016	38	16/1/17	36	17/2/17	32	11/3/2017	35	17/4/17	37	23/5/17	35
		100 ppm		SO2		35	, -, -:	32	, -,	31	, -,	32	1-1, 1, -1	34		31
		50 ppm	1	Nox	-	32	1	34	1	33		34	1	36		33
2 FF	BC boiler E2	150.0 mg/Nm3	34	SPM	=	36	-	38	1	37	1	33	1	31	-	32
_ [-														1		
		100 ppm	1	SO2	-	31	1	34	-	35		31	1	33		30
		50 ppm	1	Nox	7	33		36		34		37	1	35		32
3 FE	BC boiler No.3	150.0 mg/Nm3	50	SPM	7	34	1	35	1	34		37		34	1	36
		,														
		100 ppm	1	SO2		32	1	31		32		34	1	31		33
		50 ppm	1	Nox		36	1	35		37		36	1	33		35
	ot Oil Unit (Resorcinol ant)	150.0 mg/Nm3	32.5	SPM		ND		ND		ND		ND	1	ND		ND
	,	100 ppm		SO2	7	ND	-	ND	1	ND	1	ND	1	ND	-	ND
		50 ppm		Nox	7	24	-	26	1	24	1	25	1	27	-	29
West Site		PP		1									1			
5 FE	BC boiler W1	150.0 mg/Nm3	45	SPM	30/12/2016	32	17/1/17	34	18/2/17	31	10/3/2017	33	18/4/17	35	24/5/17	34
		100 ppm	1	SO2	7	37	1	35		33		35	1	32	-	31
		50 ppm	1	Nox	7	35	1	32		36		37	1	38	-	36
6 Co	oal fired Boiler W1	150.0 mg/Nm3	35	SPM		Not in use	1	Not in use		Not in use						
		100 ppm		SO2	7											
		50 ppm	1	Nox	7											
7 Co	oal fired boiler W2	150.0 mg/Nm3	35	SPM		Not in use	1	Not in use		Not in use						
		100 ppm		SO2	7											
		50 ppm	1	Nox	7											
8 Ho	ot Oil Plant shed-B	150.0 mg/Nm3	19	SPM		ND	17/1/17	ND	18/2/17	ND	10/3/2017	ND		ND	24/5/17	ND
		100 ppm		SO2	-	ND	1 ' '	ND	1 ' '	ND	1 ′ ′	ND		ND	1 ' '	ND
		50 ppm		Nox	7	27		29	1	27	1	29		28		26
9 Oi	il burner Shed B (Standby)	150.0 mg/Nm3	17	SPM		STAND BY										
		100 ppm		SO2	7											
		50 ppm		Nox	-											
10 Bo	oiler (50 TPH 2 Nos)	50.0 mg/Nm3	108	PM	31/12/2016	39	18/1/17	37	16/2/17	35	31/3/17	37	26/4/17	36	29/5/17	38
	· · · · · ·	100 ppm		SO2	7 ' '	34	1 ' '	32	1 ' '	36	1 ' '	34	1 ' '	32	1 ' '	35
		50 ppm		Nox	-	31		30	1	31		32	1	34		36
				Mercury	-	ND		ND	1	ND		ND	1	ND		ND
11 DO	G set 1500 KVA (Standby)	150.0 mg/Nm3	12	SPM		STAND BY		STAND BY	1	STAND BY		STAND BY		STAND BY		STAND BY
	(**************************************	100 ppm	1	SO2	7											
		50 ppm	1	Nox	7											
North Site							1	1	1			1			1	
12 Th	nermic fluid heater of CO/DAP Plant	150.0 mg/Nm3	12	SPM	31/12/2016	58		56		52	30/3/17	49	25/4/17	47	18/5/17	45
	,	100 ppm	1	SO2	 	49	1	43	1	40	1	37	1	35	=	34
1		50 ppm	1	NOx	+	34	1	32	1	30	1	32	┪	33	=	31
		1-2 PP		1-10-1	l .	1~.	1	32	1	30	I	134	1	Page 29 of 3	100	131

Table 3 : Ambient Air Monitoring details

Station	Parameter	Limit microgm/NM ³	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17
	PM 2.5	60	27	29	26	28	26	28
	PM10	100	55	59	56	58	59	57
CC VVI	SO2	80	11.8	10.2	10.4	10.8	10.6	10.8
66 KV	NOx	80	12.6	11.4	10.8	11.2	11.6	11.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	37	35	34	36	38	35
	PM10	100	60	58	55	52	57	59
Opposite	SO2	80	10.6	10.2	10.6	10.2	10.8	10.4
Shed D	NOx	80	11.2	11.8	11.2	11.87	11.4	12.2
	Ammonia	850	15.2	16.1	15.8	14.2	15.3	16.4
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	34	37	38	34	35	32
	PM10	100	57	62	61	59	56	54
Near West site ETP	SO2	80	11.2	12.4	11.4	11.8	11.2	11.2
hear west site ETP	NOx	80	12.4	13.2	12.4	12.5	12.3	13.2
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	31	33	36	38	39	37
	PM10	100	51	56	59	54	52	56
Near North ETP	SO2	80	10.6	11.6	11.8	10.6	10.2	10.6
near north EIP	NOx	80	11.6	12.8	12.6	11.8	11.4	12.4
	Ammonia	850	10.6	11.2	10.8	12.5	12.2	13.4
	HC1	200	ND	ND	ND	ND	ND	ND

TSDF NOx 80 12.4 11.6 11.4 12.6 13.8 13 Ammonia 850 ND ND ND ND ND ND ND HCl 200 ND ND ND ND ND ND ND PM 2.5 60 29 26 26 29 23 20 PM10 100 43 49 47 43 51 49 Main Guest House SO2 80 10.2 10.4 10.2 10.4 10.8 10	2 1.6 3.4 D D 0 9 0.2 1.6
TSDF SO2 80 11.8 10.8 10.2 11.4 12.4 11 NOx 80 12.4 11.6 11.4 12.6 13.8 13 Ammonia 850 ND ND ND ND ND ND ND HCl 200 ND ND ND ND ND ND ND ND PM 2.5 60 29 26 26 29 23 20 PM10 100 43 49 47 43 51 49 SO2 80 10.2 10.4 10.2 10.4 10.8 10 NOx 80 11.2 11.6 11.2 12.4 12.8 11	1.6 3.4 D D O O O O O O O O O O O O O O O O O
NOx 80 12.4 11.6 11.4 12.6 13.8 13 Ammonia 850 ND ND ND ND ND ND HCl 200 ND ND ND ND ND ND ND PM 2.5 60 29 26 26 29 23 20 PM10 100 43 49 47 43 51 49 SO2 80 10.2 10.4 10.2 10.4 10.8 10 NOx 80 11.2 11.6 11.2 12.4 12.8 11	3.4 D D 0 9 0.2 1.6
Main Guest House NOx 80 12.4 11.6 11.4 12.6 13.8 13 13 13 13 14 12.6 13.8 13 13 13 13 13 14 14 14	D D D O 9 O.2 1.6 D
HCl 200 ND ND ND ND ND ND ND ND ND ND ND ND ND	D 0 9 0.2 1.6
PM 2.5 60 29 26 26 29 23 20 PM 10 100 43 49 47 43 51 49 SO2 80 10.2 10.4 10.2 10.4 10.8 10 NOx 80 11.2 11.6 11.2 12.4 12.8 11	0 9 0.2 1.6 D
Main Guest House PM10 100 43 49 47 43 51 49 SO2 80 10.2 10.4 10.2 10.4 10.8 10 NOx 80 11.2 11.6 11.2 12.4 12.8 11	9 0.2 1.6 D
Main Guest House SO2 80 10.2 10.4 10.2 10.4 10.8 10 NOx 80 11.2 11.6 11.2 12.4 12.8 11	0.2 1.6 D
Main Guest House NOx 80 11.2 11.6 11.2 12.4 12.8 11	1.6 D
NOx 80 11.2 11.6 11.2 12.4 12.8 11	D
Ammonia 850 ND ND ND ND ND ND	
HC1 200 ND ND ND ND ND ND	D
PM 2.5 60 28 25 27 24 23 22	2
PM10 100 45 47 51 47 45 51	1
W/veth Colony SO2 80 10.4 10.8 11.4 10.8 9.2 10	0.4
Wyeth Colony NOx 80 11.4 11.2 11.8 11.4 10.4 10	0.8
Ammonia 850 ND ND ND ND ND	D
HC1 200 ND ND ND ND ND	D
PM 2.5 60 24 22 24 21 20 21	1
PM10 100 48 42 48 41 43 46	5
Gram panchayat SO2 80 9.8 9.2 10.6 11.6 10.6 9.2	2
hall NOx 80 10.4 9.8 11 12.2 11.4 9.6	.6
Ammonia 850 ND ND ND ND ND ND	D
HC1 200 ND ND ND ND ND ND	D
PM 2.5 60 33 31 29 26 27 27	7
PM 10 100 58 62 58 54 56 58	3
Main office, North SO2 80 11.6 11.2 11.6 11.2 11.4 12	2.3
NOx 80 12.8 12.4 12.2 13.2 12.8 13	3.4
Ammonia 850 ND ND ND ND ND ND	D

	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	23	21	26	24	22
	PM10	100	54	42	46	51	48	42
Haria water tank	SO2	80	11.6	8.6	8.2	8.8	8.2	7.2
naria water tarik	NOx	80	12.4	10.2	10.6	9.2	10.3	10.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND

Table 4: Fugitive Emission Monitoring details

Plant	Area	Parameter	Prescribed Limit	Results of VOCs in Milligram per NM ³					
				Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17
2,4 D	Reactor	Phenol	19	0.144	0.204	0.165	0.138	0.120	0.096
	Buffer tank	Chlorine	3.0	0.108	0.136	0.121	0.148	0.161	0.148
Resorcinol	Benzene storage tank area near vent	Benzene	15	1.94	2.92	1.92	1.47	1.04	1.27
	Near Extraction/scrubber unit	Butyl acetate	-	ND	ND	ND	ND	ND	ND
Pharma	At second floor work area	Ammonia	0.8	0.71	0.850	0.740	0.820	0.950	0.810
	Ammonia recovery area	Ammonia	0.8	0.77	0.840	0.770	0.690	0.720	0.690
Ероху - I	At vacuum pump 2nd floor	ECH	10	7.94	7.110	6.920	7.770	8.550	8.710
	At vessel POS 1208 G.F	ECH	10	8.71	7.150	7.210	8.520	8.710	8.660
Shed H	At second floor work area	Nitrobenzene	5	0.437	0.840	2.980	1.760	2.060	3.760
Shed J	Buffer Tank	Chlorine	3	0.176	0.184	0.296	0.114	0.178	0.128

Table 5: Noise level monitoring data (Day Time)

Sr. No.	Location		Noise Level, dBA							
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	75		
1	Near Main guest house	66	64	61	58	56	58	75		
2	Near TSDF	64	62	60	62	63	62	75		
3	At Wyeth Colony	62	60	59	57	59	61	75		
4	Gram Panchayat Hall	59	63	57	55	57	59	75		
5	Near Main Office North site	66	65	62	63	64	63	75		
6	ETP North site	68	69	68	67	68	67	75		
7	Opposite shed D	65	68	66	69	65	66	75		
8	ETP West site	63	66	68	66	67	68	75		
9	Water tank Haria road	59	58	59	62	63	64	75		
10	Near 66KVA substation	57	55	57	59	58	59	75		

Table 6: Noise level monitoring data (Night Time)

Sr. No.	Location		Noise Level, dBA									Noise Level, dBA				Permissible Limits, dBA
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	70								
1	Near Main guest house	60	61	57	52	51	52	70								
2	Near TSDF	58	59	56	57	53	56	70								
3	At Wyeth Colony	56	55	53	52	50	54	70								
4	Gram Panchayat Hall	54	57	52	51	52	52	70								
5	Near Main Office North site	61	60	56	58	56	57	70								
6	ETP North site	60	64	63	61	59	61	70								
7	Opposite shed D	58	62	61	63	61	60	70								
8	ETP West site	56	61	63	62	60	62	70								
9	Water tank Haria road	53	52	53	57	58	57	70								
10	Near 66KVA substation	52	50	51	55	53	56	70								

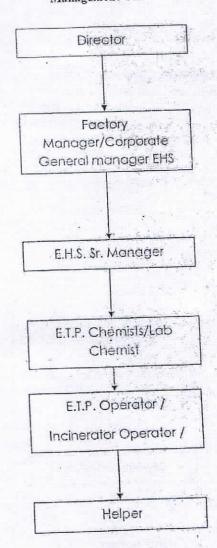
ENVIRONMENTAL AUDIT REPORT

FOR AUDIT PERIOD
APRIL-2016
TO
MARCH-2017

Industry

M/s. ATUL LIMITED., ATUL-396020, DIST: VALSAD.

Auditor
SHROFF S R ROTARY INSTITUTE OF
CHEMICAL TECHNOLOGY (SRICT)
Block No. 402, At & Post Vataria, Dist. Bharuch.


ANNEXURE - 19 COMPLIANCE REPORT AND CASE/COMPLAIN

	Detail	Has valid consent/ authorization	Complying with standards and other Conditions
(A)	Compliance Report of water as per Water Act, 1974: If NO, comment:		Complied
(B)	Compliance Report for Air as per Air Act, 1981: If NO, comment	Yes.	Complied
(C)	Compliance Report for the storage and handling of hazardous waste/chemicals under The Hazardous Waste (Management and Handling and trans boundary Movement) Rule, 2008 & EPA-86 If NO, comment:	Consent is valid up to 03.11.2019	Complied

Figure 1

Organogram of Environment Health & Safety

Management Cell

Atul Limited

Project: CRZ clearance for proposed 4.0 km long treated effluent discharge pipe line in Par estuary, Dist. Valsad. CRZ Compliance for the period December 2016– May 2017 as per CRZ Clearance No. ENV-1097-2942-P, dated 17.01.1998.

No.	Condition	Complia	ance				
1	The Company shall strictly adhere to all	Complie	ed. Details are given below in the table:				
	the provisions of CRZ notification of	No.	Clause under CRZ notification	Compliance			
	1991 and subsequent amendments.	1	Imposes the given restrictions in setting up	Noted			
			and expansion of industries, operations or				
			processes in CRZ.				
		2	List of prohibited activities within CRZ.	Noted			
		3	Guideline for regulation of permissible activities.	Noted			
		4	Procedure for monitoring and enforcement.	Applicable to Ministry			
		Ann 1	Classification of costal regular zone.	Noted			
		Ann 2	Guidelines for development of beach/ resort/ hotels.	NA			
		Ann 3	List pf petroleum products permitted in storage in CRZ except CRZ-1.	NA			
2	The company shall strictly adhere to the conditions stipulated by the Gujarat Pollution Control Board in their Consent order.	acts. Sti	ed. The company complies with all stipulated not pulation made in CCA by GPCB are being compliby the external agency, i.e. our Environmental and Latest audit report for year 16-17 is attached	ed and the same is auditors appointed			
3	The company shall discharge the treated effluent meeting the norms prescribed by G.P.C.B.	•					
			ximum values during the compliance period conf emission went beyond the stipulated standards.				

below:						
Sr. No.	Parameter	Norms		Values for the period De 16-May17		
			Min.	Max.	Avg.	
1	рН	5.5-9.0	7.1	8.1	7.4	
2	Colour (Pt. Co. Scale)		56.0	86.0	69.7	
3	Temperature (°C)	40	26.0	30.0	27.8	
4	Suspended Solids	100 mg/l	46.0	72.0	58.3	
5	Phenolic Compounds	5 mg/l	0.4	1.9	0.8	
6	Cyanide	0.2 mg/l	0.0	0.0	0.0	
7	Sulphide	2 mg/l	0.2	1.1	0.6	
8	Ammonical Nitrogen	50 mg/l	3.9	42.0	28.4	
9	BOD	100 mg/l	18.5	40.0	32.5	
10	COD	250 mg/l	212.0	238.9	222.6	
11	Hexa. Chromium Cr+6	1 mg/1	0.0	0.0	0.0	
12	Total Chromium Cr ⁺²	2 mg/1	0.1	0.8	0.3	
13	Fluorides	2 mg/1	0.0	0.0	0.0	

The effluent quality at the ETP discharge point is regularly being monitored by the Environmental auditors appointed by GPCB. Latest audit report for the year 16-17 is attached as **Annexure 1**. The same has been already submitted to GPCB vide our latter Atul/GPCB/En. Audit/16-17 dated 28.6.17. The same is being submitted to CPCB herewith as directed.

GPCB also monitor the treated effluent quality at intervals. Recent result by GPCB is attached as **Annexure 2**.

The river water quality at the discharge point is regularly being monitored by GPCB. Agencies like NIO, Pollucon Laboratories Pvt. Ltd- MoEF

		approved agency, Envision Enviro Technologies Pvt. Ltd –NABET accredited have also done the monitoring during the years. Relevant extracts from latest reports were submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4/4/17.
	The company shall keep records of the quality of effluents being discharge during the tides as per the recommendations of N.I.O.	Complied . We are keeping the records of quality effluents being discharged during the tides in soft copy as per the recommendations of N.I.O.
4	The company shall submit the quarterly progress report of compliance of conditions.	Complied . We have submitted progress reports to the Forest and Environment Department of Gujarat during the pipe line installation work. Couple of reports were already submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4/4/17.
5	The company shall bear all the cost of the agency to be appointed by the Government for overseeing/monitoring the project activities during construction/operational phases.	Noted and will be complied as and when it will come.
6	The company shall comply with all the recommendations, additional conditions and environmental safeguards prescribed in the report of NIO dated March, 1997.	Complied . Compliance to NIO recommendations are being followed. Copy of compliance report submitted to Forest and Environment Department of Gujarat was already submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4/4/17.
6	The company shall submit an Environmental Audit Report every year.	Complied . The Environmental Audit Report for year 16-17 is attached as an Annexure 1 .
7	The company shall obtain the necessary permissions from different Government department/agencies under different laws/Acts.	Complied . We have received GPCB approval for operating 4Km line vide its consent letter no. 16399 dated 22.12.98. Copy already submitted to Ministry vide our letter Atul/SHE/MoEF/Visit/3 dated 4/4/17.
8	Any additional conditions which may imposed from time to time.	Noted and will be complied.

Table 1: Quality of treated effluent

Sr. No.	Parameter			Re	sults			GPCB Limits
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	
1	рН	7.2	7.3	7.18	8.14	7.2	7.1	5.5-9.0
2	Colour (Pt. Co. Scale)	68	66	86	84	56	58	
3	Temperature (°C)	26	28	26	28	29	30	40
4	Suspended Solids	52	48	46	72	64	68	100
5	Phenolic Compounds	0.4	0.7	1.86	0.48	0.7	0.5	5.0
6	Cyanide	ND	ND	ND	ND	ND	ND	0.2
7	Sulphide	ND	ND	ND	1.08	0.6	0.2	2.0
8	Ammonical Nitrogen	42	40	3.92	16.32	32	36	50
9	BOD	36	35	28.3	18.54	37	40	100
10	COD	221	216	221.5	238.9	212	226	250
11	Hexa. Chromium Cr+6	ND	ND	ND	ND	ND	ND	1.0
12	Total Chromium Cr+2	0.2	0.1	0.76	0.73	0.1	0.2	2.0
13	Fluorides	ND	ND	ND	ND	ND	ND	2.0

Note: ND is Not Detectable. Unit of measurement is mg/l else specified.

ANALYSIS REPORT FOR WATER / WASTE WATER SAMPLE

Gujarat Pollution Control Board, Vapi
C5/124, GIDC Vapi,
Near Hotel Pritam,
Vapi - 396 195
Tele:(0260) 2432089

Sample ID:211014 - Analysis Completion:31/05/2017

Dves And Dve-Intermediates. / LAB Inward: 41625

Accreditation Standards & NABL Certificate Details: Biological(T-3121) / Chemical(T-3120) / 18.09.2014 / 17.09.2016

TEST REPORT

Test Report No.: 41625 Date: 01/06/2017

1. Name of the Customer : Atul Limited - 23158

2. Address : 5, 6, 29, 30, 33, 34, 35, 37, 38, 80, 81, 84, 85, 91, etc.,AT & P.O.ATUL, Dist. Valsad, Pin:

ATUL-396020, Taluka: Valsad, District: Valsad, GIDC: Not In Gidc

3. Nature of Sample : REP-Representative/Grab, (Insp Type : DIR-After Direction)

4. Sample Collected By : Patel lateshkumar A, AEE

5. Quantity of Sample Received : 0

6. Code No. of the Sample : 211014

7. Date & Time of Collection & Inwarding : 20/05/2017, (1525 to 1525) & 22/05/2017

8. Date of Start & Completion of Analysis : 22/05/2017 & 31/05/2017

9. Sampling Point : From Gaurd pond for final discharge ~ From Final Treated waste water guard pond

10. Flow Details (Remarks) : --

11. Mode of Disposal12. Ultimate Receiving Body13. Estuary zone of river par

13. Temperature on Collection : 30 & pH Range on pH Strip :@ 7 on pH Strip 14. Carboys Nos for : Barcode & Color & Appearance :Brown

15. Water Consumption & W.W.G (KLPD) : Ind :23726.000 , Dom :938.000 & Ind :21337.000 , Dom :939.000

Sr	Parameter	Unit	Test Method	Range of Testing	Result
1	Temperature	Centigrade	IS: 3025 (Part – 9) – 1984(Reaffirmed 2006)	Ambient oC - 60 oC	30
2	pH	pH Units	4500 H+ B APHA Standard Methods 22nd edi.2012	1 – 14 pH value As or	6.850
3	Colour	Pt.Co.Sc.	2120 B APHA Standard Methods 22nd edi. 2012	2 - to 99 Hazen & 1-50	85
4	Total Dissolved Solids	mg/l	Gravimetric method. (2540 C APHA Standard Method	10 – 200000 mg/L	3410
5	Suspended Solids	mg/l	Gravimetric method. (2540 D APHA Standard Method	2 – 10000 mg/L	04
6	Ammonical Nitrogen	mg/l	1).Titrimetric method (4500 NH3 B & C APHA Standa	1 - 2000 mg/l.	3.19
7	Chloride	mg/l	Argentometric method. (4500 CI? B APHA Standard N	1 - 50000 mg/l	1300
8	Sulphate	mg/l	APHA(22nd edi)4500 SO4 E	2-40mg/l	994
9	Chemical Oxygen Demand	mg/l	APHA (22nd Edition)- 5220 B Open Reflux Method-2	5.0- 50000 mg/l	174
10	Oil & Grease	mg/l	Liquid – Liquid Partition Gravimetric method. (5520 B	01 – 1000 mg/l	1.6
11	Phenolic Compounds	mg/l	4 Amino Antipyrene method without Chloroform Extra	0.1 – 50 mg/l	0.298
12	Sulphide	mg/l	APHA (22nd Edi.)4500-s2-F –iodometric Method	1-500.0 mg/l	BDL
13	B.O.D (3 Days 27oC)	mg/l	3 - Day BOD test. (IS 3025 (Part 44) 1993 Reaffirmed	05–50000 mg/l	46

<u>Laboratory Remarks</u>: FREEZE By:445-lab_445 Dt.: 01/06/2017

J.D.OZA, Lab Head

Field Observation :

Note:

- 1. $^{\star}\,$ These parameters are covered under the scope of NABL.
- 2. The results refer only to the tested samples and applicable parameters. Endorsement of products is neither inferred nor implied.
- 3. Samples will be destroyed after 10 days from the date of issue of test report unless otherwise specified.
- 4. This report is not to be reproduced wholly or in part or used in any advertising media without the permission of the Board in writing.
- 5. The Board is not responsible for the authenticity for the samples not collected by the Board's officials.
- Total liability of our laboratory is limited to the invoiced amount. Any dispute arising out of this report is subject to Gujarat Jurisdiction only.
- 7. Permissible Limits: as per Schedule VI of EPA Rules, 1986 as ammended by Second and Third ammendment 1993 for Effluents
- 8. Physicochemical and microbiological parameters, Std.Methods for Water and Waste Water- 22nd Edition by APHA.
- 9. Bioassay test (for toxicity) -IS:6582:Part-2:2001; Reaffirmed 2007.

Atul Limited

Project: Setting up an addition captive power plant of 22 MW at post Atul, Dist. Valsad EC Compliance Report for the period December 2016 – May 2017 as per EC No. SEIAA/GUJ/EC/1(d)/340/2016

	Condition		•	ori as per EC	NO. SEIA	A/ G00/	EC/I(u)/ UTU/ 40	710		
No.		Comp	liance								
-	cific Conditions :	_	44 4 36 .11	• • • •		anan		1 3 5 /	- 1		
1.	Unit shall comply the emission		lied. Monthly mo								
	standards mentioned in the		onment Auditing	& Consultan	cy Service	, Rajkot	t, an N	ABL app	roved		
	Notification by MOEF&CC vide	agenc	y.								
	S.O. 3305(E) dated 07/12/2015.	Thom		wing the comm	lionoo noni	od oonfi	ma tha	t at na tin	ma tha		
			The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary								
			en below:	ma the supula	aicu stailua	iius. i ai	ameter	wisc suii	.iiiiai y		
		_	nary of Stack resu	ılte							
		No.	Parameter	Standard	Unit	Value	s for th	e period	1		
				values as			6-May17				
				per CCA		Min.	Max.	Avg.			
		1	SPM	50.0	mg/Nm ³	35	39	37			
		2	SO_2	100	ppm	32	36	34			
		3	Nox	50	ppm	30	36	32			
		4	Mercury	-	-	ND	ND	ND			
		Detail	s of stack results i	s given in Tab	le 1. (Pl. s	ee pg. no	o. 25)		_		
2.	All measures shall be taken to	Comn	lied. No contamin	ation found							
7.	prevent soil and ground water	Comp	ica. No containin	attori touria.							
	contamination.										
3.	The project proponent shall	Comp	lied. Detailed stu	dv report on (Groundwat	er quali	tv in an	nd around	d Atul		
	submit the detailed study report		one by reputed and								
	to Gujarat Pollution Control	Surat	and submitted to (GPCB vide our	letter date	d 22.5.1	7. Extra	cts of the	same		
	Board (GPCB) at least once in a	is atta	ched herewith as	Annexure 1.							
	year, through the reputed										
	institute or university to assess										
	the impacts on soil and ground										
	water quality, if any due to										
	application of waste water										
	generation from the CPP and										

	shall adopt the additional mitigation measures as may be suggested through such studies. A.2:WATER:								
4.	The fresh water requirement for the proposed expansion shall not exceed 2095 KL/day and it shall be met through the existing water	Complied . The average water consumption for the referred expansion for the report period is 803 KL/day only which is well within the limit. Detail break up is given in below table:							
	supply system from River par.	Water Consumption	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total
		Month wise	31425	28055	20599	12621	26472	25312	144485
		Per day	1048	935	687	421	882	844	803(avg.)
		below: Water Consumption			Stipulated value		Values for the period Dec 16-May 17		
							Dec 1		-
							Min.	6-May 17 Max.	Avg.
		Water Consump	ption KL/	day	2095			6-May 17	
		Water Consump	ption KL/	day	2095		Min.	6-May 17 Max.	Avg.
	Permission from the Concern authority for additional water requirement shall be obtained.	Water Consumption Complied. We additional required	already	, and the second		from Go	Min. 421	6-May 17 Max. 1048	Avg. 803

6.	The industrial effluent generation from the proposed expansion shall not exceed 270 KL/day and entire quantity of effluent shall be utilized for ash quenching, dust	Complied. The KL/day only house and no Wastewater	which is	well wit se to ETP	thin the li	mit and e	entire qu	iantity is below tal	utilized in
	suppression, fire hydrant make up, Gardening plants floor	generation Month wise	7834	7981	7487	8010	7498	7247	46058
	cleaning.	Per day	261	266	250	267	250	242	256 (avg.)
		The maximum wastewater go below: Wastewater g	eneration	went b	-	stipulate	d value.	for the p	ry is given
		Wastewater ge	eneration i	m³/d	270				Avg. 256
7. 8.	There shall be no discharge of industrial effluent from the proposed project in any case. Domestic waste water generation shall not exceed 1	Complied. Ne from D M Pla water. Complied. Do	nt. RO F	Plant is t	peing impl	emented	to recyc	le the coo	
	generation shall not exceed 1 KL/day Which shall be disposed of into soak system.								
9.	The unit shall provide metering facility at the inlets and outlets of the collection cum reuse system of waste water and maintain records of the same.	Complied. Meter is provided at the inlet of the collection cum reuse system waste water and records are being maintained.			system of				
10.	Proper logbooks of waste water reuse system showing quantity and quality of effluent reused	Complied. Lo	gbooks n	naintaine	ed.				

	1 11 1 1 1 1									
	shall be maintained and									
	furnished the GPCB from time to									
	time.									
11.	Rain water harvesting of rooftop	Complied.								
	rain water shall be undertaken									
	as proposed in the EIA report of									
	the project and the same water									ļ
	shall be used for the various									
	activities of the project to									
	conserve fresh water as well as to									
	recharge ground water through percolation wells. Before									
	★									
	recharging the rain water, pre-									
	treatment must be done to									
	remove suspended matter.									
	A.3 AIR:									
12.	Existing two coal fired steam	Complied. Tw			d boilers	s have a	already	been disr	nantled	for
	boilers shall be replaced with two	upcoming new	AFBC bo	iler.						
	AFBC Boilers having capacity 50									
	TPH each.									
13.	Fuel (Indian coal/and or	Complied. The	average	fuel cons	sumption	for the	report pe	eriod is 12	2142 MT	/M
	Imported coal and or Lignite) to	only which is w	ell within	n the lim	it. Detail	break up	o is giver	in below	table:	
	the tune of 16725 MT/M shall be	-								
	used for proposed boilers.									
	1 1	Fuel	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total	٦ '
		consumption					•			
		Month wise	14233	14425	12230	9343	12064	10559	72854	7 '
									12142	7 '
									(avg.)	
		L	<u> </u>					<u> </u>	ı	ال
		/T1	111_	<u></u> .41	1; -		1C ····		1:	∡1
		The maximum								
		wastewater ger	neration	went bey	yona the	stipulat	ea vaiue	e. Summa	iry is giv	ven
		below:								
										,

		Fuel consumption Stipulated value			for the 5-May 17	
				Min.	Max.	Avg.
		Fuel consumption MT/M	16725	9343	14425	12142
14.	Sulfur and ash content of the fuel to be used shall be analyzed and its record shall be maintained.	Complied . Sulfur and ash conshall be maintained. Ash Content: 30-35 % (Indian Sulphur Content: <0.1% (Indian	Coal), 10-12% (Im _j	ported c	oal)	nd its record
15	A Long term study of radio activity and heavy metal contents in coal/lignite to be used shall be carried out through a reputed institute and results thereof analyzed regularly and reported along with monitoring reports. Thereafter mechanism for an inbuilt continuous monitoring for radio activity and heavy metals in coal/lignite and Flyash (Including bottom ash) shall be put in place.	Noted and will be done.				
16.	Height of flue gas stacks attached to boilers shall be minimum 74.58 meters.	Complied . The emission is dis CPCB standard as given below For Boilers: Stack Height H=1 Height of the stack is 106 meters.	4(Q) ^{0.3}	-		-
17.	A flue gas stack of 74.58 m height shall be provided with online monitoring system to proposed steam Boiler. Mercury gas emission from stacks shall also be monitored on periodic basis.	Complied. Height of the stack is SOx and NOx is already been in Mercury emission is also monit Royal Environment Auditing & agency. Please refer point 1.	nade and connected tored on monthly b	d to CPC pasis by	CB server	pproved M/s.

18.	High efficiency Electro static	Complied . Total 4 field ESP has been installed and commissioned to meet
	precipitators (ESP) with efficiency	further stringent requirement also.
	not less than 99.9% shall be	
	installed for control of flue gas	
	emission from the proposed	
	Boilers.	
	The ESP shall be operated	Complied . Particulate matter emission did not exceed the GPCB norms during
	efficiently to ensure that	report period. Please refer point 1.
	particulate matter emission does	
	not exceed the GPCB norms.	
	The control system shall be	Complied . Flue gas emission from the stack meets with the specified standards
	designed and integrated in plant	for the report period. Please refer point 1.
	DCS in such a way that amended	
	from ESP exceeds the specified	
	standard prescribed in the	
	Environment (protection) Rules	
	1986 as amended from time to	
	time, utilization of boiler capacity	
	shall so that flue gas emission	
	from the stack meets with the	
	specified standards or boiler shall	
	shut down totally.	
19.	Third party monitoring of the	Noted and will be done.
	functioning of ESP along with	
	efficiency shall be carried out	
	once in a year through a reputed	
	institute / organization.	
20.	Lime stone injection technology	Complied . A system to inject lime stone powder and meeting with the prescribed
	shall be adopted to control SO2	norms of SO ₂ is already been installed and interconnected with the online
	and it shall be ensured that SO2	emission monitoring system.
	levels in the ambient air do not	SO ₂ levels in the ambient air did not exceed the prescribed standards for the
	exceed the prescribed standards.	report period. Please refer point 30.
21.	The company shall prepare	Complied . Our company is ISO 14001 certified company and regular preventive
	schedule and carry out regular	maintenance of all the critical equipment is a part of our system.
	preventive maintenance of	

	mechanical and electrical parts of ESPS and assign responsibility of								
	preventive maintenance to the senior officer of the company.								
22.	Diesel to the tune of 300 Lit/hr shall be used as a fuel in stand – by D. G. Set (1500 KVA)	Complied . The only which is w							
		Diesel consumption	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	Total
		Month wise	280	0	15000	100	0	210	15590
		Per Hr	0.38	0	22.32	0.13	0	0.28	3.57 (avg.)
23.	The flue gas emission from DG set shall be dispersed through adequate stack height as per CPCB standards. At no time the emissions levels shall go beyond the stipulated standards. Acoustic enclosure be provided to DG seta to mitigate the noise pollution.	Complied. Aco		C	·		···		
24.	-	Complied . On made and conn		0 5		SPM, So	Ox and I	NOx is alr	ready been
	An arrangement shall also be done for reflecting the online monitoring result on the company's server, which can be assessable by the constructed.	Complied.							
25.	Adequate storage facility for the fly ash in terms of closed silos shall be provided at site. No pond shall be constructed.	Complied . Two bottom ash are			capacity	for fly as	sh and o	ne silo of	45 m³ for

26.	Handling of the fly ash shall be through a closed pneumatic	Complied. It is already provided.
27.	Ash shall be handled only in dry	Complied.
28.	state. The unit shall strictly comply with	Complied . Fly ash generated is utilized 100%. Data given in Table 2 . (Pl. see
	the fly ash Notification under the EPA and it shall ensure that there	pg. no. 25)
	is 100% utilization of fly ash to be generated from the unit.	
29	The fugitive emission in the work zone environment shall be monitored. The emission shall confirm to the standards prescribed by the concerned authorities from time to time (e.g. Directors of Industrial Safety & Health) Following Indicative guidelines shall be also be followed to reduce the fugitive emission.	Complied.
	All handing & transport of coal & Lignite shall be exercised through covered coal conveyors only.	Complied . All handing & transport of coal & Lignite is done through covered coal conveyors only.
	Enclosure shall be provided at coal / Lignite loading and uploading operations.	Complied. Enclosure provided.
	Water shall be sprinkled on coal / Lignite stock piles periodically to retain some moisture in top layer and also while compacting to reduce the fugitive emission.	Complied . Water regularly sprinkled on coal / Lignite stock piles to retain some moisture in top layer and also while compacting to reduce the fugitive emission.
	All transfer points shall be fully enclosed.	Complied . All transfer points are fully enclosed.

	Adequate dust suppression /	Complied . Adequate dust extraction system at crusher house is provided While
	extraction system at crusher	dust suppression system the coal/ Lignite unloading areas to abate dust
	house as well as for the coal/	nuisance.
	Lignite stock yard and other	
	vulnerable areas shall be	
	provided to abate dust nuisance.	
	Accumulated coal dust / fly ash	Complied . Coal dust / Fly ash is being cleaned regularly. Coal dust and fine
	on the ground and surfaces shall	particles are being loaded to coal handling plant after spraying water on it.
	be removed / swept regularly and	
	water the area after sweeping.	
	Internal roads shall be either	Complied . Paver blocks have been provided in the ESP and some internal area
	concreted or asphalted or paved	of power plant. Concrete Road have been built in the surrounding area of Power
	properly to reduce the fugitive	Plant to reduce fugitive emissions during vehicle movement.
	emission during vehicular	
	movement.	
	Air borne dust shall be controlled	Complied . Waste water of neutralization pit is being used for dust suppression
	with water sprinkles at suitable	in Coal plant and Fly ash handling units. Covered trucks / closed bulkers are
	locations in the plant.	being utilized for handling coal and fly ash.
	Coal / Lignite shall be	
	transported through covered	
	trucks only whereas fly ash shall	
	be transported through closed	
	trucks only.	
	A green belt shall be developed all	Complied . Proper plantation is done all around the plant boundary and also
	around the plant boundary and	the roads to mitigate fugitive & transport dust emission.
	also the roads to mitigate fugitive	Photographs attached as Annexure 2 .
	& transport dust emission.	
30.	Regular Monitoring of ground	Complied . We are regularly monitoring PM2.5, PM10, NOx, SO2 in ambient air
	level concentration of PM2.5,	and will be continued monitoring. Ambient Air data given in Table 3 . (Pl. see
	PM10, NOx, SO2 and Hg shall in	pg. no. 26)
	the impact zone and its records	
	shall be maintained.	

Ambient air quality levels shall not exceed the standards stipulated by GPCB.

Complied. The Location of ambient air quality monitoring stations had been decided in consultation with GPCB so that at least one station is installed in the up wind and downwind direction as well as where maximum ground level concentration are anticipated. This also covers the impact, if any, of the project plant. The same had been shown to authority like SPCB, CPCB & MoEF during their visit to our factory.

The maximum values during the compliance period confirms that at no time the emission level went beyond the stipulated standards. Parameter wise summary is given below:

Summary of Ambient Air Quality results:

Station	Parameter	Limit microgm/NM ³	Values for the period 16- May 17			
			Min.	Max.	Avg.	
66 KV	RSPM (PM2.5)	60	26	29	27.3	
	PM10	100	55	59	57.3	
	SO2	80	10.2	11.8	10.8	
	NOx	80	10.8	12.6	11.6	
	Ammonia	850	ND	ND	ND	
	HC1	200	ND	ND	ND	
Opposite	RSPM (PM2.5)	60	34	38	35.8	
Shed D	PM10	100	52	60	56.8	
	SO2	80	10.2	10.8	10.5	
	NOx	80	11.2	12.2	11.6	
	Ammonia	850	14.2	16.4	15.5	
	HC1	200	ND	ND	ND	
Near West	RSPM (PM2.5)	60	32	38	35	
site ETP	PM10	100	54	62	58.2	
	SO2	80	11.2	12.4	11.5	
	NOx	80	12.3	13.2	12.7	
	Ammonia	850	ND	ND	ND	

	HC1	200	ND	ND	ND
Near North	RSPM (PM2.5)	60	31	39	35.7
ETP	PM10	100	51	59	54.7
	SO2	80	10.2	11.8	10.9
	NOx	80	11.4	12.8	12.1
	Ammonia	850	10.6	13.4	11.8
	HC1	200	ND	ND	ND
TSDF	RSPM (PM2.5)	60	35	39	36.7
	PM10	100	52	66	59.7
	SO2	80	10.2	12.4	11.7
	NOx	80	11.4	13.8	12.5
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Main Guest	RSPM (PM2.5)	60	20	29	25.5
House	PM10	100	43	51	47
	SO2	80	10.2	10.8	10.7
	NOx	80	11.2	12.8	11.8
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Wyeth	RSPM (PM2.5)	60	22	28	24.8
Colony	PM10	100	45	51	47.7
	SO2	80	9.2	11.4	10.5
	NOx	80	10.4	11.8	11.7
	Ammonia	850	ND	ND	ND
	HC1	200	ND	ND	ND
Gram	RSPM (PM2.5)	60	20	24	22
panchayat hall	PM10	100	41	48	44.7
l liall	SO2	80	9.2	11.6	10.7
	NOx	80	9.6	12.2	10.7

			Ammonia	850	ND	ND	ND	
			HC1	200	ND	ND	ND	
		Main office,	RSPM (PM2.5)	60	26	33	28.8	
		North site	PM10	100	54	62	57.7	
			SO2	80	11.2	12.3	11.6	
			NOx	80	12.2	13.4	12.8	
			Ammonia	850	ND	ND	ND	
			HC1	200	ND	ND	ND	
		Haria water	RSPM (PM2.5)	60	21	29	24.7	
		tank	PM10	100	42	54	47.7	
			SO2	80	7.2	11.6	8.8	
			NOx	80	9.2	12.4	10.6	
			Ammonia	850	ND	ND	ND	
			HC1	200	ND	ND	ND	
	If at any stage these levels are found to exceed the prescribed limits necessary additional control measures shall be taken be decided in consultation with the GPCB.	Complied. No	such case foun	d.				
	A.4 SOLID/ HAZARDOUS WASTE:							
31.	The company shall strictly comply with the rules and regulations with regards to handling and disposal of Hazardous waste in accordance from time to time.	Complied.		L				
	Authorization from the GPCB shall be obtained for collection /	Complied. Wo	e have CCA valid	up to 3.11.19				

	treatment/storage disposal of hazardous waste.	
32.	Hazardous waste sludge shall be packed stored in separate designated hazardous waste storage facility with impervious bottom and leachate collection facility, before its disposal.	Complied. There is no Haz. waste generation in this project.
33.	The used oil shall be sold to only to the registered recyclers / refiners.	Complied . Used oil is being sold to GPCB authorized vendor namely ABC Organics & Chemicals.
34.	The discarded containers / barrels / bags / liners shall be sold only to the registered recycler.	Complied . No bags / liners are being utilized for Power Plant.
35.	For storage of fly ash closed silos of adequate capacity shall be provided.	Complied . Fly ash Silos 2 No's of storage capacity 300 Cu.M each have been installed. A separate bed ash silo of 100 Cu.M has been installed.
	No ash pond shall be construed in the project.	Complied . No ash pond is construed in the project.
36.	The fly ash shall be supplied to the manufacturers of fly ash based products such as cement, concrete blocks, bricks, panels, etc.	Complied . Fly ash is being given to Cement and Bricks manufacturers and also being used for our own Bricks Manufacturing unit.
	The unit shall strictly comply with the Fly Ash Notification under EPA and it shall be ensured that there is 100% utilization of fly ash to be generated from the unit.	Complied . We are complying with the Fly Ash Notification under EPA and there is 100% utilization of fly ash being generated from the unit. Please refer point 28.
37.	All possible efforts shall be made for co-processing of the Hazardous waste prior to disposal into TSDF/CHWIF.	Complied.

	A.5 SAFETY:	
38.	The project management shall strictly comply with the provisions made in the Factories Act, 1948 as well as manufacturer, storage and Impact of Hazardous chemicals Rules 1989 as amended in 2000 for handling of hazardous chemicals.	Complied.
39.	Necessary precautions like continuous monitoring of hot spot (ignite lignite) using temperature detection systems water sprinklers, avoiding stacking of lignite near stream pipeline etc shall be made for storing lignite to prevent fire hazard.	Complied . Lignite is usually used on the same day of its receiving at site as far as possible. Lignite is not being stored for not more than 3-4 Days. However, Water spray and fire hydrant system is available for the fuel storage sheds.
40.	All the risk mitigation measures, general & specific recommendations mentioned in risk Assessments Report shall be implemented.	Complied. All recommendations implemented.
41.	A well designed fire hydrants system shall be installed as per the prevailing standards.	Complied. Fire hydrant system is adequate and as per standards.
42.	Personal protective Equipment shall be provided to worker and its usage shall be ensured and supervised.	Complied . PPEs like nose masks, safety goggles, chemical resistive aprons, fire proof apron, Hand gloves, safety helmet, welding goggles, ear mugs, safety shoes etc are provided to the workers and utilization of the PPEs is followed strictly in Power Plant.
43.	First Aid Box and required antidotes for the chemical used in the unit shall be readily available	Complied. First aid box are kept in each plant and at strategic locations whereas antidotes are kept in the medical Centre.

	in adequate quantity at all the times.	
44.	Occupational health surveillance of the workers shall be done its records shall be maintained. Preemployment and periodical medical examination for all the worker shall be undertaken as per the Factories Act & rules.	Complied . Being done on regular basis as per the Factories Act & rules.
45.	Flameproof fittings shall be provided at the proposed power plant.	Complied . Flame proof fittings are provided.
46.	Adequate firefighting facilities shall be provided at the proposed power plant.	Complied. Firefighting facilities are adequate.
47.	Proper ventilation shall be provide in the work area.	Complied. Proper ventilation provided.
48.	All transporting routes within the factory premise shall have paved roads to minimize splashes and spillages.	Complied . The roads inside factory are either of cement concrete or Bitumen concrete.
49.	The project management shall prepare a details Disaster management plan (DMP) for the project as the guidelines from Directors of Industrial safety and Health.	Complied. Detailed disaster management plan is already prepared.
	A.6 NOISE:	
50.	To minimize the noise pollution the following noise control measures shall be implemented.	Complied.
	Selection of any new plant equipment shall be made with specifications of low levels.	Complied.

Manufacturer / supplier of major noise generating machines / equipment like air compressor. Feeder pumps, turbine generators, etc shall be instructed to make required design modifications wherever possible regulatory norms with respect to noise generation for individual units.	Complied.
Regular maintenance of machinery and vehicles shall be undertaken to reduce the noise impact.	
Noise suppression measures such as enclosures, buffers and / or protective measures shall be provided.	Complied . Acoustic enclosures are provided on DG sets. Silencers have been provided on main steam vent valves of Boilers.
Employees shall be provided with ear protection measures like earplugs or earmuffs.	Complied.
Proper oiling lubrication and preventive maintenance shall be carried out of the machineries and equipment to reduce noise generation.	Complied.
Construction equipment generating minimum noise vibration shall be chosen.	Complied.
Ear plugs and / muffs shall be made compulsory for the construction workers working near the noise generating activities / machines / equipment.	Complied.

	77.1.1 1	
	Vehicles and construction	Complied.
	equipment with internal	
	combustion engines without	
	proper silencer shall not be	
	allowed to operate.	
	Construction equipment meeting	Complied.
	the norms specified by EP Act,	-
	1986 shall only be used.	
	Noise control equipment and	Complied.
	baffling shall be employed on	
	generators especially when they	
	are operated near the residential	
	and sensitive areas.	
	Noise levels shall be reduced by	Complied.
		Compiled.
	the use of adequate mufflers on	
	all motorized equipment	
51.	The overall noise level in and	Complied. Silencers, accoustic hood are provided.
	around the plant area shall be	
	kept well within the prescribed	
	standard by providing noise	
	control measures including	
	acoustic insulation,	
	hoods, silences, enclosures,	
	vibration, dampers etc.on all	
	sources of noise generation.	
	The ambient noise levels shall	Complied. The ambient and workplace noise level confirms to the standard
	confirm to the standards	prescribed under EPA. The same is being regularly monitored and its details are
	prescribed under the	given in Table 4 and 5 . (Pl. see pg. no. 28)
	Environment (protection) Act and	5
	Rules. Workplace noise levels for	The maximum values during the compliance period confirms that at no time the
	workers shall be as per the	noise emission level went beyond the stipulated standards. Summary is given
	factories Act and Rules.	below:
	factories Act and Rules.	DCIOW.

Noise level monitoring data (Day Time)

Sr. No.	Location	Permissible Limits, dBA	Values for the period Dec 16-May 17		
		75	Min.	Max.	Avg.
1	Near Main guest house	75	56	66	61
2	Near TSDF	75	60	64	62
3	At Wyeth Colony	75	57	62	60
4	Gram Panchayat Hall	75	55	63	58
5	Near Main Office North site	75	62	66	64
6	ETP North site	75	67	69	68
7	Opposite shed D	75	65	69	67
8	ETP West site	75	63	68	66
9	Water tank Haria road	75	58	64	61
10	Near 66KVA substation	75	55	59	58

Noise level monitoring data (Night Time)

Sr. No.	Location	Permissible Limits, dBA	Values for the period Dec 16-May 17		
		70	Min.	Max.	Avg.
1	Near Main guest house	70	51	61	56
2	Near TSDF	70	53	59	57
3	At Wyeth Colony	70	50	56	53
4	Gram Panchayat Hall	70	51	57	53
5	Near Main Office North site	70	56	61	58
6	ETP North site	70	59	64	61
7	Opposite shed D	70	58	63	61
8	ETP West site	70	56	63	61
9	Water tank Haria road	70	52	58	55
10	Near 66KVA substation	70	50	56	53

	A.7 GREEN BELT AND OTHER PLANTATION.	
52.	The unit shall develop green belt in at least 68000 sq.m area within the premises. Green belt shall comprises of rows of varying height tall native trees with thick foliage in the periphery of the factory premises.	Complied. Green belt is developed and we planted more than 50000 plants every year.
53.	The unit shall also take up adequate plantation at suitable open Land on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat / GPCB and submit an action plan for the same for next three years to the GPCB.	Complied . We plant more than 50000 plants every year on road sides and other open areas in nearby villages or schools in consultation with the Gram panchayat.
	B.OTHER CONDITIONS:	
54.	In the event of failure of any pollution control system adopted by the unit, the unit shall be safely closed down and shall not be restarted until the desired efficiency of the control equipment has been achieved.	Complied . No such case during the repot period. However, if such case happens we ensure to close down the unit.
55.	All the recommendation, mitigation measures, environments protection measures and safeguard proposed in the EIA report of the project prepared by M/s; Eco chem Sales &Service, surat & submitted vide letter no NIL dated 03/11/2015 and commitments	Complied.

	made daming massertation before	
	made during presentation before	
	SEAC, proposed in the EIA report	
	shall be strictly adhered to in	
	letter and spirit.	
56.	All the recommendation of CREP	Complied . CREP guidelines is being followed.
	guidelines as may be applicable	
	from time to time shall be	
	following vigorously.	
57.	A separate environment	Complied . Implementation of stipulated environmental safeguards were
37.	- I	
	management cell with qualified	ensured by the Company's SHE department.
	staff shall be set up for	
	implementation of stipulated	
	environmental safeguards.	
58.	The project authorities must	Complied.
	strictly adhere to stipulations	
	made by the Gujarat Pollution	
	Control Board (GPCB), state	
	government and statutory	
	authority.	
59 .	No further expansion or	Complied . No further expansion took place.
	modification in the plant likely to	our place.
	cause environmental impacts	
	shall be carried out without	
	obtaining prior Environment	
	0 1	
	Clearance from the concerned	
	authority.	
60.	The above conditions will be	Noted.
	enforced, inter-alla under the	
	provisions of water (prevention	
	&Control or pollution) Act, 1974,	
	Air (prevention & Control of	
	pollution) Act, 1981, the	
	Environment (Protection) Act,	
	1986, Hazardous & other wastes	

	boundary Movements) Rules 2016 and the public liability insurance Act, 1991 along with	
	their amendments and rules.	
61.	The project proponent shall comply all the conditions mentioned in 'The Companies (Corporate Social Responsibility Policy) Rules, 2014 and its amendments from time to time in a letter and spirit.	Complied.
62.	The project proponent shall ensure that unit complies with all the environment protection measures, risk mitigation measures and safeguards recommended in the EMP report and Risk .Assessments study repot as well as proposed by project proponent.	

armark adequate funds to implement the conditions stipulated by SEIAA as GPCB along with the implementation scheduled for all the conditions stipulated herein. The funds so provided shall not be diverted for any other purpose.

Complied.

EMP measures are implemented.

A separate budget is being allocated every year to comply with all the legal requirement stipulated by SPCB, CPCB & MoEF apart from upkeep of pollution control systems and facilities. Total expenditure for the report period is given in below table including EMS implementation:

Details	Expense in Lac Rs.		
Site development	25		
Civil work	2000		
Plant and machinery	6049		
Environment management system	984		
Greenbelt development	10		
Other assets Contingency	200		
Establishment charges	15		
Project management and consultancy	50		
Idc and financial charges	350		
Total	9683		

64. The applicant shall inform the public that the project has been accorded environmental clearance by the SEIAA and that the copies of the clearance letter are available with the GPCB and May also be seen at website of SEIAA / SEAC/ GPCB.

Complied. The advertisement given in newspapers as well as copies distributed to the Panchayat, Zila parishad, District Industrial Centre on 11.11.2016.

This shall be advertised within seven days from the date of the clearance letter, in at least two local newspapers that are widely

Complied. The advertisement copy already submitted vide our letter dated 27.1.17.

	1	
	circulated in the region, one of	
	which shall be in the Gujarat	
	language and the other in	
	English.	
	A copy each of the same shall be	Complied. The advertisement copy already submitted vide our letter dated
	forwarded to the concerned	27.1.17.
	Regional office of the Ministry.	
65.	The project proponent shall also	Complied. No additional conditions so far imposed by the SEAC or the SEIAA
	comply with additional conditions	or any other competent authority for the purpose of the environmental
	that may be imposed by the SEAC	protection and management.
	or the SEIAA or any other	
	competent authority for the	
	purpose of the environmental	
	protection and management.	
66.	It shall be mandatory for the	Complied. We regularly submit the half-yearly compliance report.
	project management to submit	Complete We regularly submit the hair yearly compliance report.
	half-yearly compliance report in	
	respect of the stipulated prior	
	environmental clearance terms	
	and condition in hard and soft	
	copies to the regulatory authority	
	concerned on 1st June and 1st	
	December of each calendar year.	NT 1
67.	0	Noted.
	submission of false / fabricated	
	data and failure to comply with	
	any of conditions mentioned	
1	above may result in withdrawal of	
	this clearance and attract action	
	under the provisions of	
	Environment (Protection) Act,	
	1986.	
68.	The project authorities shall also	Complied.
	adhere to the stipulations made	
-	•	

	by the Gujarat Pollution Control	
	Board.	
69.	The SEIAA may revoke or suspend the clearance. If implementation of any of the	Noted.
	above conditions is not found satisfactory.	
70.	The company in a time bound manner shall implement these conditions. The SEIAA reserves the stipulate additional conditions, if the same is found necessary.	Noted.
71.	The project authorities shall inform the GPCB, Regional Office of MoEF and SEIAA about the date of financial closure and final approval of the project by the concerned authorities and the date of start of the project.	Complied.
72.	This environmental clearance is valid for seven years from the date of issue.	Noted.
73.	Any appeal against this environmental clearance shall lie with the National Green Tribunal, if preferred, within a period of 30 day as prescribed under section 16 of the National Green Tribunal Act, 2010.	Noted.

Table 1 : Stack Result

No.	Parameter	Standard values as per CCA	Unit	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17
1	SPM	50	mg/Nm ³	39	37	35	37	36	38
2	SO_2	100	ppm	34	32	36	34	32	35
3	Nox	50	ppm	31	30	31	32	34	36
4	Mercury	-	-	ND	ND	ND	ND	ND	ND

Table 2 : Fly ash generation and disposal details:

Fly Ash	Unit	Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17
Generation	MT	7370.61	6883.73	4889.19	3711.48	3893.671	3637.295
Disposal	MT	7370.61	6883.73	4889.19	3711.48	3893.671	3637.295

Table 3: Ambient air monitoring:

Station	Parameter		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17
				2.0	2.5		0.5	
	PM 2.5	60	27	29	26	28	26	28
	PM10	100	55	59	56	58	59	57
66 KV	SO2	80	11.8	10.2	10.4	10.8	10.6	10.8
00 11 V	NOx	80	12.6	11.4	10.8	11.2	11.6	11.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	37	35	34	36	38	35
	PM10	100	60	58	55	52	57	59
Opposite	SO2	80	10.6	10.2	10.6	10.2	10.8	10.4
Shed D	NOx	80	11.2	11.8	11.2	11.87	11.4	12.2
	Ammonia	850	15.2	16.1	15.8	14.2	15.3	16.4
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	34	37	38	34	35	32
	PM10	100	57	62	61	59	56	54
Noon Woot oite ETD	SO2	80	11.2	12.4	11.4	11.8	11.2	11.2
Near West site ETP	NOx	80	12.4	13.2	12.4	12.5	12.3	13.2
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	31	33	36	38	39	37
	PM10	100	51	56	59	54	52	56
Naan Nanda ETD	SO2	80	10.6	11.6	11.8	10.6	10.2	10.6
Near North ETP	NOx	80	11.6	12.8	12.6	11.8	11.4	12.4
	Ammonia	850	10.6	11.2	10.8	12.5	12.2	13.4
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	35	38	35	39	35	35
	PM10	100	64	66	62	60	54	52
TSDF	SO2	80	11.8	10.8	10.2	11.4	12.4	11.6
	NOx	80	12.4	11.6	11.4	12.6	13.8	13.4
	Ammonia	850	ND	ND	ND	ND	ND	ND

	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	26	26	29	23	20
	PM10	100	43	49	47	43	51	49
Main Guest House	SO2	80	10.2	10.4	10.2	10.4	10.8	10.2
Main Guest nouse	NOx	80	11.2	11.6	11.2	12.4	12.8	11.6
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	28	25	27	24	23	22
	PM10	100	45	47	51	47	45	51
Wyeth Colony	SO2	80	10.4	10.8	11.4	10.8	9.2	10.4
wyeth Colony	NOx	80	11.4	11.2	11.8	11.4	10.4	10.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	24	22	24	21	20	21
	PM10	100	48	42	48	41	43	46
Gram panchayat	SO2	80	9.8	9.2	10.6	11.6	10.6	9.2
hall	NOx	80	10.4	9.8	11	12.2	11.4	9.6
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	33	31	29	26	27	27
	PM10	100	58	62	58	54	56	58
Main office, North	SO2	80	11.6	11.2	11.6	11.2	11.4	12.3
site	NOx	80	12.8	12.4	12.2	13.2	12.8	13.4
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND
	PM 2.5	60	29	23	21	26	24	22
	PM10	100	54	42	46	51	48	42
Haria water tank	SO2	80	11.6	8.6	8.2	8.8	8.2	7.2
liana water talik	NOx	80	12.4	10.2	10.6	9.2	10.3	10.8
	Ammonia	850	ND	ND	ND	ND	ND	ND
	HC1	200	ND	ND	ND	ND	ND	ND

Table 4: Noise level monitoring data (Day Time)

Sr. No.	Location		Permissible Limits, dBA					
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	75
1	Near Main guest house	66	64	61	58	56	58	75
2	Near TSDF	64	62	60	62	63	62	75
3	At Wyeth Colony	62	60	59	57	59	61	75
4	Gram Panchayat Hall	59	63	57	55	57	59	75
5	Near Main Office North site	66	65	62	63	64	63	75
6	ETP North site	68	69	68	67	68	67	75
7	Opposite shed D	65	68	66	69	65	66	75
8	ETP West site	63	66	68	66	67	68	75
9	Water tank Haria road	59	58	59	62	63	64	75
10	Near 66KVA substation	57	55	57	59	58	59	75

Table 5: Noise level monitoring data (Night Time)

Sr. No.	Location	Noise Le	Permissible Limits, dBA					
		Dec-16	Jan-17	Feb-17	Mar-17	Apr-17	May-17	70
1	Near Main guest house	60	61	57	52	51	52	70
2	Near TSDF	58	59	56	57	53	56	70
3	At Wyeth Colony	56	55	53	52	50	54	70
4	Gram Panchayat Hall	54	57	52	51	52	52	70
5	Near Main Office North site	61	60	56	58	56	57	70
6	ETP North site	60	64	63	61	59	61	70
7	Opposite shed D	58	62	61	63	61	60	70
8	ETP West site	56	61	63	62	60	62	70
9	Water tank Haria road	53	52	53	57	58	57	70
10	Near 66KVA substation	52	50	51	55	53	56	70

"PRELIMINARY STUDY FOR UNDERGROUND WATER QUALITY"

For

ATUL LIMITED

P.O ATUL-396 020,

DIST: - VALSAD.

MARCH-2017

Prepared By:

Poll Con

Pollucon Laboratories Pvt. Ltd.

544, BELGIUM TOWER, RING ROAD, SURAT 395 003.

PHONE/FAX: [0261] 2455751, 2601224, 2601106

Web: www.polluconlab.com E. mail. pollucon@gmail.com

T 0820 - 821

ISO 9001:2008

ISO 14001:2004

OHSAS 18001:2007

Content

R.	TITLE	PAGE NO.
10.	TODICS DVT LTD	04
1	INTRODUCTION OF POLLUCON LABORATORIES PVT. LTD.	06
2	INTRODUCTION OF ATUL LTD.	08
3	IMPORTANCE OF UNDERGROUNDWATER	10
4	SCOPE OF WORK SAMPLING, ANALYSIS & RESULT	11
4.1	SAMPLING LOCATIONS	12
4.2	SAMPLING AND ANALYTICAL METHODS	13
4.3	QA/QC PROCEDURE	13
4.4	CHECKLIST FOR SAMPLE ANALYSIS AND CHAIN OF CUSTODY	13
4.5	LABORATORY ANALYSIS	14
4.6	CHECK LIST FOR SAMPLE INTEGRITY	14
4.7	CHECK LIST FOR SAMPLE ANALYSIS	15
5	RESULTS OF HAND PUMP WATER	20
	RESULTS OF BOREWELL WATER	38
6	SUMMERY	30

List of Annexure

	TITLE
SR. NO.	ARODATORIES DVT. LTD.
1	CREDENTIALS OF POLLUCON LABORATORIES PVT. LTD.
Α	NATIONAL ACCREDITATION BOARD FOR TESTING AND CALIBRATION LABORATORIES
В	ISO 9001:2008
С	ISO 14001:2004
D	OHSAS 18001:2007
E	GUJARAT POLLUTION CONTROL BOARD ENVIRONMENTAL AUDIT RECOGNITION

4.1 Sampling Locations

- Total 22 underground water samples were collected from various locations covering factory premises as well as nearby villages so as to derive clear picture of underground water quality in and around Atul.
- ${\it Underground\ water\ samples\ were\ collected\ and\ preserved\ as\ per\ 10500:2012}$


Sample details are as under:

Sr. No.	Details of Borewell
1	Borewell near Spic 4 plant, North site, Atul Ltd
2	Borewell near R & D Lab, North Site, Atul Ltd
3	Borewell near R & D Lab, west Site, Atul Ltd
4	Borewell opp. East of New Boiler, West Site, Atul Ltd
5	Borewell at west of Old fire pond, West Site, Atul Ltd
6	Borewell at east of Shed A Plant, West Site, Atul Ltd
7	Borewell near Sulfa viofom Plant, East Site, Atul Ltd
8	Borewell near T acid Plant, East Site, Atul Ltd
9	Borewell at north of Caustic soda Plant, East Site, Atul Ltd
10	Borewell near Easter Plant, East Site, Atul Ltd
11	Borewell at Madan Mohan Goushala, Haria village
12	Borewell at down stream of TSDF (Borewell No. 3), Atul Ltd
13	Borewell at Up stream of TSDF (Borewell No. 5), Atul Ltd
14	Borewell near Main gate of GJK colony, Atul Village
15	Borewell near gate of Atik colony, Atul Village
16	Borewell near cross road of Down colony, Atul Village
17	Borewell near Hardner Plant, North Site, Atul Ltd
18	Well at Ishvarbhai's wadi, Haria Village
19	Hand Pump at Mahesh Park, Haria Village
20	Panchayat Hand Pump Near Railway Crossing, Haria Village
21	Hand Pump at First gate, poultry farm road, Parnera village
22	Hand Pump near Derasar, Second gate, Atul Village

Summary

Analyzed Parameters of the underground water samples collected are within the Prescribed Std. of IS 10500:2012 - ACCEPTABLE LIMIT/ PERMISSIBLE LIMIT for Selected tested parameters. It is concluded that groundwater quality is good and no contamination was observed.

